Chapter 7: Problem 11
Either compute the inverse of the given matrix, or else show that it is singular. \(\left(\begin{array}{cc}{3} & {-1} \\ {6} & {2}\end{array}\right)\)
Chapter 7: Problem 11
Either compute the inverse of the given matrix, or else show that it is singular. \(\left(\begin{array}{cc}{3} & {-1} \\ {6} & {2}\end{array}\right)\)
All the tools & learning materials you need for study success - in one app.
Get started for freefind a fundamental matrix for the given system of equations. In each case also find the fundamental matrix \(\mathbf{\Phi}(t)\) satisfying \(\Phi(0)=\mathbf{1}\) $$ \mathbf{x}^{\prime}=\left(\begin{array}{ll}{1} & {-1} \\ {5} & {-3}\end{array}\right) \mathbf{x} $$
In each of Problems 24 through 27 the eigenvalues and eigenvectors of a matrix \(\mathrm{A}\) are given. Consider the corresponding system \(\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}\). $$ \begin{array}{l}{\text { (a) Sketch a phase portrait of the system. }} \\\ {\text { (b) Sketch the trajectory passing through the initial point }(2,3) \text { . }} \\ {\text { (c) For the trajectory in part (b) sketch the graphs of } x_{1} \text { versus } t \text { and of } x_{2} \text { versus } t \text { on the }} \\ {\text { same set of axes. }}\end{array} $$ $$ r_{1}=1, \quad \xi^{(1)}=\left(\begin{array}{r}{-1} \\ {2}\end{array}\right) ; \quad r_{2}=-2, \quad \xi^{(2)}=\left(\begin{array}{c}{1} \\\ {2}\end{array}\right) $$
Let \(\Phi(t)\) denote the fundamental matrix satisfying \(\Phi^{\prime}=A \Phi, \Phi(0)=L\) In the text we also denoted this matrix by \(\exp (A t)\), In this problem we show that \(\Phi\) does indeed have the principal algebraic properties associated with the exponential function. (a) Show that \(\Phi(t) \Phi(s)=\Phi(t+s) ;\) that is, \(\exp (\hat{\mathbf{A}} t) \exp (\mathbf{A} s)=\exp [\mathbf{A}(t+s)]\) Hint: Show that if \(s\) is fixed and \(t\) is variable, then both \(\Phi(t) \Phi(s)\) and \(\Phi(t+s)\) satisfy the initial value problem \(\mathbf{Z}^{\prime}=\mathbf{A} \mathbf{Z}, \mathbf{Z}(0)=\mathbf{\Phi}(s)\) (b) Show that \(\Phi(t) \Phi(-t)=\mathbf{I}\); that is, exp(At) \(\exp [\mathbf{A}(-t)]=\mathbf{1}\). Then show that \(\Phi(-t)=\) \(\mathbf{\Phi}^{-1}(t) .\) (c) Show that \(\mathbf{\Phi}(t-s)=\mathbf{\Phi}(t) \mathbf{\Phi}^{-1}(s)\)
Consider the equation $$ a y^{\prime \prime}+b y^{\prime}+c y=0 $$ $$ \begin{array}{l}{\text { where } a, b, \text { and } c \text { are constants. In Chapter } 3 \text { it was shown that the general solution depended }} \\\ {\text { on the roots of the characteristic equation }}\end{array} $$ $$ a r^{2}+b r+c=0 $$ $$ \begin{array}{l}{\text { (a) Transform Eq. (i) into a system of first order equations by letting } x_{1}=y, x_{2}=y^{\prime} . \text { Find }} \\ {\text { the system of equations } x^{\prime}=A x \text { satisfied by } x=\left(\begin{array}{l}{x_{1}} \\ {x_{2}} \\ {x_{2}}\end{array}\right)} \\\ {\text { (b) Find the equation that determines the eigenvalues of the coefficient matrix } \mathbf{A} \text { in part (a). }} \\ {\text { Note that this equation is just the characteristic equation (ii) of Eq. (i). }}\end{array} $$
find a fundamental matrix for the given system of equations. In each case also find the fundamental matrix \(\mathbf{\Phi}(t)\) satisfying \(\Phi(0)=\mathbf{1}\) $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{-\frac{3}{4}} & {\frac{1}{2}} \\\ {\frac{1}{8}} & {-\frac{1}{4}}\end{array}\right) \mathbf{x} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.