Chapter 6: Problem 6
Find the Laplace transform of \(f(t)=\cos a t,\) where \(a\) is a real constant.
Chapter 6: Problem 6
Find the Laplace transform of \(f(t)=\cos a t,\) where \(a\) is a real constant.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the inverse Laplace transform of the given function by using the convolution theorem. \(F(s)=\frac{G(s)}{s^{2}+1}\)
The Tautochrone. A problem of interest in the history of mathematics is that of finding the tautochrone-the curve down which a particle will slide freely under gravity alone, reaching the bottom in the same time regardless of its starting point on the curve. This problem arose in the construction of a clock pendulum whose period is independent of the amplitude of its motion. The tautochrone was found by Christian Huygens \((1629-\) \(1695)\) in 1673 by geometrical methods, and later by Leibniz and Jakob Bernoulli using analytical arguments. Bernoulli's solution (in \(1690)\) was one of the first occasions on which a differential equation was explicitly solved. The Tautochrone. A problem of interest in the history of mathematics is that of finding the tautochrone-the curve down which a particle will slide freely under gravity alone, reaching the bottom in the same time regardless of its starting point on the curve. This problem arose in the construction of a clock pendulum whose period is independent of the amplitude of its motion. The tautochrone was found by Christian Huygens \((1629-\) \(1695)\) in 1673 by geometrical methods, and later by Leibniz and Jakob Bernoulli using analytical arguments. Bernoulli's solution (in \(1690)\) was one of the first occasions on which a differential equation was explicitly solved. The geometrical configuration is shown in Figure \(6.6 .2 .\) The starting point \(P(a, b)\) is joined to the terminal point \((0,0)\) by the arc \(C .\) Arc length \(s\) is measured from the origin, and \(f(y)\) denotes the rate of change of \(s\) with respect to \(y:\) $$ f(y)=\frac{d s}{d y}=\left[1+\left(\frac{d x}{d y}\right)^{2}\right]^{1 / 2} $$ Then it follows from the principle of conservation of energy that the time \(T(b)\) required for a particle to slide from \(P\) to the origin is $$ T(b)=\frac{1}{\sqrt{2 g}} \int_{0}^{b} \frac{f(y)}{\sqrt{b-y}} d y $$
Concerned with differentiation of the Laplace transform. Let $$ F(s)=\int_{0}^{\infty} e^{-s i} f(t) d t $$ It is possible to show that as long as \(f\) satisfics the conditions of Theorem \(6.1 .2,\) it is legitimate to differentiate under the integral sign with respect to the parameter \(s\) when \(s>a .\) (a) Show that \(F^{\prime}(s)=\mathcal{L}\\{-l f(t)\\}\) (b) Show that \(F^{(n)}(s)=\mathcal{L}\left\\{(-t)^{n} f(t)\right\\} ;\) hence differentiating the Laplace transform corresponds to multiplying the original function by \(-t .\)
Find the inverse Laplace transform of the given function. $$ F(s)=\frac{2(s-1) e^{-2 s}}{s^{2}-2 s+2} $$
For each of the following initial value problems use the results of Problem 28 to find the differential equation satisfied by \(Y(s)=\mathcal{L}[\phi(t)\\},\) where \(y=\phi(t)\) is the solution of the given initial value problem. \(\begin{array}{ll}{\text { (a) } y^{\prime \prime}-t y=0 ;} & {y(0)=1, \quad y^{\prime}(0)=0 \text { (Airy's equation) }} \\ {\text { (b) }\left(1-t^{2}\right) y^{\prime \prime}-2 t y^{\prime}+\alpha(\alpha+1) y=0 ;} & {y(0)=0, \quad y^{\prime}(0)=1 \text { (Legendre's equation) }}\end{array}\) Note that the differential equation for \(Y(s)\) is of first order in part (a), but of second order in part (b). This is duc to the fact that \(t\) appcars at most to the first power in the equation of part (a), whereas it appears to the second power in that of part (b). This illustrates that the Laplace transform is not often useful in solving differential equations with variable coefficients, unless all the coefficients are at most linear functions of the independent variable.
What do you think about this solution?
We value your feedback to improve our textbook solutions.