Chapter 6: Problem 38
In this problem we show how a general partial fraction expansion can be used to calculate many inverse Laplace transforms. Suppose that $$ F(s)=P(s) / Q(s) $$ where \(Q(s)\) is a polynomial of degree \(n\) with distinct zeros \(r_{1} \ldots r_{n}\) and \(P(s)\) is a polynomial of degree less than \(n .\) In this case it is possible to show that \(P(s) / Q(s)\) has a partial fraction cxpansion of the form $$ \frac{P(s)}{Q(s)}=\frac{A_{1}}{s-r_{1}}+\cdots+\frac{A_{n}}{s-r_{n}} $$ where the coefficients \(A_{1}, \ldots, A_{n}\) must be determined. \(\begin{array}{ll}{\text { (a) Show that }} & {} \\ {\qquad A_{k}=P\left(r_{k}\right) / Q^{\prime}\left(r_{k}\right),} & {k=1, \ldots, n}\end{array}\) Hint: One way to do this is to multiply Eq. (i) by \(s-r_{k}\) and then to take the limit as \(s \rightarrow r_{k}\) (b) Show that $$ \mathcal{L}^{-1}\\{F(s)\\}=\sum_{k=1}^{n} \frac{P\left(r_{k}\right)}{Q^{\prime}\left(r_{k}\right)} e^{r_{k} t} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.