Chapter 6: Problem 36
For each of the following initial value problems use the results of Problem 28 to find the differential equation satisfied by \(Y(s)=\mathcal{L}[\phi(t)\\},\) where \(y=\phi(t)\) is the solution of the given initial value problem. \(\begin{array}{ll}{\text { (a) } y^{\prime \prime}-t y=0 ;} & {y(0)=1, \quad y^{\prime}(0)=0 \text { (Airy's equation) }} \\ {\text { (b) }\left(1-t^{2}\right) y^{\prime \prime}-2 t y^{\prime}+\alpha(\alpha+1) y=0 ;} & {y(0)=0, \quad y^{\prime}(0)=1 \text { (Legendre's equation) }}\end{array}\) Note that the differential equation for \(Y(s)\) is of first order in part (a), but of second order in part (b). This is duc to the fact that \(t\) appcars at most to the first power in the equation of part (a), whereas it appears to the second power in that of part (b). This illustrates that the Laplace transform is not often useful in solving differential equations with variable coefficients, unless all the coefficients are at most linear functions of the independent variable.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.