Chapter 6: Problem 27
Consider the Laplace transform of \(t^{\rho},\) where \(p>-1\) (a) Referring to Problem \(26,\) show that $$ \qquad \begin{aligned} \mathcal{L}\left\\{t^{p}\right\\} &=\int_{0}^{\infty} e^{-s t} t^{p} d t=\frac{1}{s^{p+1}} \int_{0}^{\infty} e^{-x} x^{p} d x \\\ &=\Gamma(p+1) / s^{\rho+1}, \quad s>0 \end{aligned} $$ (b) Let \(p\) be a positive integer \(n\) in (a); show that $$ \mathcal{L}\left\\{t^{n}\right\\}=n ! / s^{n+1}, \quad s>0 $$ (c) Show that $$ \mathcal{L}\left(t^{-1 / 2}\right)=\frac{2}{\sqrt{s}} \int_{0}^{\infty} e^{-x^{2}} d x, \quad s>0 $$ It is possible to show that $$ \int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2} $$ hence $$ \mathcal{L}\left\\{t^{-1 / 2}\right\\}=\sqrt{\pi / s}, \quad s>0 $$ (d) Show that $$ \mathcal{L}\left\\{t^{1 / 2}\right\\}=\sqrt{\pi} / 2 s^{3 / 2}, \quad s>0 $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.