Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the Laplace transform to solve the given initial value problem. $$ y^{\prime \prime}+\omega^{2} y=\cos 2 t, \quad \omega^{2} \neq 4 ; \quad y(0)=1, \quad y^{\prime}(0)=0 $$

Short Answer

Expert verified
Question: Determine the solution to the initial value problem $$y^{\prime \prime}+\omega^{2} y=\cos 2 t, \quad \omega^{2} \neq 4 ; \quad y(0)=1, \quad y^{\prime}(0)=0. $$ Answer: The solution to the given initial value problem is $$y(t) = \frac{\omega^2}{2(\omega^2 - 4)}\sin(\omega t) + \frac{1}{2}\sin(2t).$$

Step by step solution

01

Apply the Laplace transform to the given differential equation

To begin solving the initial value problem, we need to apply the Laplace transform to both sides of the given differential equation. The Laplace transform of the given equation is: $$ \mathcal{L}\{y^{\prime\prime}\} + \omega^2\mathcal{L}\{y\} = \mathcal{L}\{\cos 2t\} $$ Using Laplace transform properties: $$ s^{2}Y(s) - sy(0) - y'(0) + \omega^{2}Y(s) = \frac{s}{s^2 + 4} $$ Now substitute the initial conditions \(y(0) = 1\) and \(y'(0) = 0\), and solve for Y(s).
02

Substitute the initial conditions and solve for Y(s)

Plug in the initial conditions \(y(0) = 1\) and \(y'(0) = 0\) into the equation: $$ s^{2}Y(s) - s + \omega^{2}Y(s) = \frac{s}{s^2 + 4} $$ Next, combine the terms with Y(s): $$ Y(s)(s^{2} + \omega^{2}) = s + \frac{s}{s^2 + 4} $$ Now, solve for Y(s): $$ Y(s) = \frac{s + \frac{s}{s^2 + 4}}{s^{2} + \omega^{2}} $$ $$ Y(s) = \frac{s(s^2 + 4) + s}{(s^2 + \omega^2)(s^2 + 4)} $$
03

Apply inverse Laplace transform to solve for y(t)

Finally, we apply the inverse Laplace transform to Y(s) to obtain the solution y(t): $$ y(t) = \mathcal{L}^{-1}\left\{ \frac{s(s^2 + 4) + s}{(s^2 + \omega^2)(s^2 + 4)} \right\} $$ Apply partial fraction decomposition to Y(s) and then apply inverse Laplace transform to each term: $$ y(t)=\frac{1}{\omega^2-4}[(\omega^2-4)\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+4} \right\}-\omega^{2} \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+\omega^{2}} \right\}] $$ Finally, evaluate the inverse Laplace transforms of the terms: $$ y(t) = \frac{1}{\omega^2-4}[(\omega^2-4)\frac{1}{2}\sin(2t) - \omega^{2}\frac{1}{\omega}\sin(\omega t)] $$ Simplify the expression: $$ y(t) = \frac{\omega^2}{2(\omega^2 - 4)}\sin(\omega t) + \frac{1}{2}\sin(2t) $$ So the solution to the given initial value problem is: $$ y(t) = \frac{\omega^2}{2(\omega^2 - 4)}\sin(\omega t) + \frac{1}{2}\sin(2t) $$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the Laplace transform of the given function. In Problem 27 assume that term-by-term integration of the infinite series is permissible. $$ f(t)=\left\\{\begin{array}{ll}{1,} & {0 \leq t<1} \\ {0,} & {t \geq 1}\end{array}\right. $$

Use the result of Problem 28 to find the Laplace transform of the given function; \(a\) and \(b\) are real numbers and \(n\) is a positive integer. $$ t^{n} $$

Consider the Laplace transform of \(t^{\rho},\) where \(p>-1\) (a) Referring to Problem \(26,\) show that $$ \qquad \begin{aligned} \mathcal{L}\left\\{t^{p}\right\\} &=\int_{0}^{\infty} e^{-s t} t^{p} d t=\frac{1}{s^{p+1}} \int_{0}^{\infty} e^{-x} x^{p} d x \\\ &=\Gamma(p+1) / s^{\rho+1}, \quad s>0 \end{aligned} $$ (b) Let \(p\) be a positive integer \(n\) in (a); show that $$ \mathcal{L}\left\\{t^{n}\right\\}=n ! / s^{n+1}, \quad s>0 $$ (c) Show that $$ \mathcal{L}\left(t^{-1 / 2}\right)=\frac{2}{\sqrt{s}} \int_{0}^{\infty} e^{-x^{2}} d x, \quad s>0 $$ It is possible to show that $$ \int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2} $$ hence $$ \mathcal{L}\left\\{t^{-1 / 2}\right\\}=\sqrt{\pi / s}, \quad s>0 $$ (d) Show that $$ \mathcal{L}\left\\{t^{1 / 2}\right\\}=\sqrt{\pi} / 2 s^{3 / 2}, \quad s>0 $$

Find the solution of the given initial value problem and draw its graph. \(y^{\prime \prime}+4 y=\delta(t-\pi)-\delta(t-2 \pi) ; \quad y(0)=0, \quad y^{\prime}(0)=0\)

Sketch the graph of the given function. In each case determine whether \(f\) is continuous, piecewise continuous, or neither on the interval \(0 \leq t \leq 3 .\) $$ f(t)=\left\\{\begin{array}{ll}{t,} & {0 \leq t \leq 1} \\ {3-t,} & {1

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free