Chapter 6: Problem 20
Use the Laplace transform to solve the given initial value problem. $$ y^{\prime \prime}+\omega^{2} y=\cos 2 t, \quad \omega^{2} \neq 4 ; \quad y(0)=1, \quad y^{\prime}(0)=0 $$
Chapter 6: Problem 20
Use the Laplace transform to solve the given initial value problem. $$ y^{\prime \prime}+\omega^{2} y=\cos 2 t, \quad \omega^{2} \neq 4 ; \quad y(0)=1, \quad y^{\prime}(0)=0 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the Laplace transform of the given function. In Problem 27 assume that term-by-term integration of the infinite series is permissible. $$ f(t)=\left\\{\begin{array}{ll}{1,} & {0 \leq t<1} \\ {0,} & {t \geq 1}\end{array}\right. $$
Use the result of Problem 28 to find the Laplace transform of the given function; \(a\) and \(b\) are real numbers and \(n\) is a positive integer. $$ t^{n} $$
Consider the Laplace transform of \(t^{\rho},\) where \(p>-1\) (a) Referring to Problem \(26,\) show that $$ \qquad \begin{aligned} \mathcal{L}\left\\{t^{p}\right\\} &=\int_{0}^{\infty} e^{-s t} t^{p} d t=\frac{1}{s^{p+1}} \int_{0}^{\infty} e^{-x} x^{p} d x \\\ &=\Gamma(p+1) / s^{\rho+1}, \quad s>0 \end{aligned} $$ (b) Let \(p\) be a positive integer \(n\) in (a); show that $$ \mathcal{L}\left\\{t^{n}\right\\}=n ! / s^{n+1}, \quad s>0 $$ (c) Show that $$ \mathcal{L}\left(t^{-1 / 2}\right)=\frac{2}{\sqrt{s}} \int_{0}^{\infty} e^{-x^{2}} d x, \quad s>0 $$ It is possible to show that $$ \int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2} $$ hence $$ \mathcal{L}\left\\{t^{-1 / 2}\right\\}=\sqrt{\pi / s}, \quad s>0 $$ (d) Show that $$ \mathcal{L}\left\\{t^{1 / 2}\right\\}=\sqrt{\pi} / 2 s^{3 / 2}, \quad s>0 $$
Find the solution of the given initial value problem and draw its graph. \(y^{\prime \prime}+4 y=\delta(t-\pi)-\delta(t-2 \pi) ; \quad y(0)=0, \quad y^{\prime}(0)=0\)
Sketch the graph of the given function. In each case determine whether \(f\) is
continuous, piecewise continuous, or neither on the interval \(0 \leq t \leq 3
.\)
$$
f(t)=\left\\{\begin{array}{ll}{t,} & {0 \leq t \leq 1} \\ {3-t,} & {1
What do you think about this solution?
We value your feedback to improve our textbook solutions.