Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 26

The Gamma Function. The gamma function is denoted by \(\Gamma(p)\) and is defined by the integral $$ \Gamma(p+1)=\int_{0}^{\infty} e^{-x} x^{p} d x $$ The integral converges as \(x \rightarrow \infty\) for all \(p .\) For \(p<0\) it is also improper because the integrand becomes unbounded as \(x \rightarrow 0 .\) However, the integral can be shown to converge at \(x=0\) for \(p>-1 .\) (a) Show that for \(p>0\) $$ \Gamma(p+1)=p \Gamma(p) $$ (b) Show that \(\Gamma(1)=1\). (c) If \(p\) is a positive integer \(n\), show that $$ \Gamma(n+1)=n ! $$ since \(\Gamma(p)\) is also defined when \(p\) is not an integer, this function provides an extension of the factorial function to nonintegral values of the independent variable. Note that it is also consistent to define \(0 !=1\). (d) Show that for \(p>0\) $$ p(p+1)(p+2) \cdots(p+n-1)=\Gamma(p+n) / \Gamma(p) $$ Thus \(\Gamma(p)\) can be determined for all positive values of \(p\) if \(\Gamma(p)\) is known in a single interval of unit length, say, \(0

Problem 27

The Laplace transforms of certain functions can be found conveniently from their Taylor series expansions. (a) Using the Taylor series for \(\sin t\) $$ \sin t=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n+1}}{(2 n+1) !} $$ and assuming that the Laplace transform of this scries can be computed term by term, verify that $$ \mathcal{L}\\{f(t)\\}=\arctan (1 / s), \quad s>1 $$ (c) The Bessel function of the first kind of order zero \(J_{0}\) has the Taylor series (see Section 5.8 ) $$ J_{0}(t)=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{2^{2 n}(n !)^{2}} $$ Assuming that the following Laplace transforms can be computed term by term, verify that $$ \mathcal{L}\left\\{J_{0}(t)\right\\}=\left(s^{2}+1\right)^{-1 / 2}, \quad s>1 $$ and $$\mathcal{L}\left[J_{0}(\sqrt{t})\right\\}=s^{-1} e^{-1 / 4 s}, \quad s>0$$

Problem 27

Consider the Laplace transform of \(t^{\rho},\) where \(p>-1\) (a) Referring to Problem \(26,\) show that $$ \qquad \begin{aligned} \mathcal{L}\left\\{t^{p}\right\\} &=\int_{0}^{\infty} e^{-s t} t^{p} d t=\frac{1}{s^{p+1}} \int_{0}^{\infty} e^{-x} x^{p} d x \\\ &=\Gamma(p+1) / s^{\rho+1}, \quad s>0 \end{aligned} $$ (b) Let \(p\) be a positive integer \(n\) in (a); show that $$ \mathcal{L}\left\\{t^{n}\right\\}=n ! / s^{n+1}, \quad s>0 $$ (c) Show that $$ \mathcal{L}\left(t^{-1 / 2}\right)=\frac{2}{\sqrt{s}} \int_{0}^{\infty} e^{-x^{2}} d x, \quad s>0 $$ It is possible to show that $$ \int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2} $$ hence $$ \mathcal{L}\left\\{t^{-1 / 2}\right\\}=\sqrt{\pi / s}, \quad s>0 $$ (d) Show that $$ \mathcal{L}\left\\{t^{1 / 2}\right\\}=\sqrt{\pi} / 2 s^{3 / 2}, \quad s>0 $$

Problem 28

Concerned with differentiation of the Laplace transform. Let $$ F(s)=\int_{0}^{\infty} e^{-s i} f(t) d t $$ It is possible to show that as long as \(f\) satisfics the conditions of Theorem \(6.1 .2,\) it is legitimate to differentiate under the integral sign with respect to the parameter \(s\) when \(s>a .\) (a) Show that \(F^{\prime}(s)=\mathcal{L}\\{-l f(t)\\}\) (b) Show that \(F^{(n)}(s)=\mathcal{L}\left\\{(-t)^{n} f(t)\right\\} ;\) hence differentiating the Laplace transform corresponds to multiplying the original function by \(-t .\)

Problem 28

Let \(f\) satisfy \(f(t+T)=f(t)\) for all \(t \geq 0\) and for some fixed positive number \(T ; f\) is said to be periodic with period \(T\) on \(0 \leq t<\infty .\) Show that $$ \mathcal{L}\\{f(t)\\}=\frac{\int_{0}^{T} e^{-s t} f(t) d t}{1-e^{-s T}} $$

Problem 29

Use the result of Problem 28 to find the Laplace transform of the given function. $$ f(t)=\left\\{\begin{array}{ll}{1,} & {0 \leq t<1} \\ {0,} & {1 \leq t<2}\end{array}\right. $$ $$ f(t+2)=f(t) $$

Problem 30

Use the result of Problem 28 to find the Laplace transform of the given function. $$ f(t)=\left\\{\begin{aligned} 1, & 0 \leq t<1 \\\\-1, & 1 \leq t<2 \end{aligned}\right. $$ $$ f(t+2)=f(t) $$

Problem 31

Use the result of Problem 28 to find the Laplace transform of the given function; \(a\) and \(b\) are real numbers and \(n\) is a positive integer. $$ t^{n} $$

Problem 32

Use the result of Problem 28 to find the Laplace transform of the given function. $$ \begin{array}{l}{f(t)=\sin t, \quad 0 \leq t<\pi} \\\ {f(t+\pi)=f(t)}\end{array} $$

Problem 33

Use the result of Problem 28 to find the Laplace transform of the given function; \(a\) and \(b\) are real numbers and \(n\) is a positive integer. $$ t e^{a t} \sin b t $$

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks