Chapter 5: Problem 9
Consider the Bessel equation of order \(v\) $$ x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right)=0, \quad x>0 $$ Take \(v\) real and greater than zero. (a) Show that \(x=0\) is a regular singular point, and that the roots of the indicial equation are \(v\) and \(-v\). (b) Corresponding to the larger root \(v\), show that one solution is $$ y_{1}(x)=x^{v}\left[1+\sum_{m=1}^{\infty} \frac{(-1)^{m}}{m !(1+v)(2+v) \cdots(m-1+v)(m+v)}\left(\frac{x}{2}\right)^{2 m}\right] $$ (c) If \(2 v\) is not an integer, show that a second solution is $$ y_{2}(x)=x^{-v}\left[1+\sum_{m=1}^{\infty} \frac{(-1)^{m}}{m !(1-v)(2-v) \cdots(m-1-v)(m-v)}\left(\frac{x}{2}\right)^{2 m}\right] $$ Note that \(y_{1}(x) \rightarrow 0\) as \(x \rightarrow 0,\) and that \(y_{2}(x)\) is unbounded as \(x \rightarrow 0\). (d) Verify by direct methods that the power series in the expressions for \(y_{1}(x)\) and \(y_{2}(x)\) converge absolutely for all \(x\). Also verify that \(y_{2}\) is a solution provided only that \(v\) is not an integer.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.