Chapter 5: Problem 4
Find all singular points of the given equation and determine whether each one is regular or irregular. \(x^{2}\left(1-x^{2}\right) y^{\prime \prime}+(2 / x) y^{\prime}+4 y=0\)
Chapter 5: Problem 4
Find all singular points of the given equation and determine whether each one is regular or irregular. \(x^{2}\left(1-x^{2}\right) y^{\prime \prime}+(2 / x) y^{\prime}+4 y=0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that if \(L[y]=x^{2} y^{\prime \prime}+\alpha x y^{\prime}+\beta y,\) then $$ L\left[(-x)^{r}\right]=(-x)^{r} F(r) $$ for all \(x<0,\) where \(F(r)=r(r-1)+\alpha r+\beta .\) Hence conclude that if \(r_{1} \neq r_{2}\) are roots of \(F(r)=0,\) then linearly independent solutions of \(L[y]=0\) for \(x<0\) are \((-x)^{r_{1}}\) and \((-x)^{r_{2}}\)
The Euler equation \(x^{2} y^{\prime \prime}+\) \(\alpha x y^{\prime}+\beta y=0\) can be reduced to an equation with constant coefficients by a change of the independent variable. Let \(x=e^{z},\) or \(z=\ln x,\) and consider only the interval \(x>0 .\) (a) Show that $$ \frac{d y}{d x}=\frac{1}{x} \frac{d y}{d z} \quad \text { and } \quad \frac{d^{2} y}{d x^{2}}=\frac{1}{x^{2}} \frac{d^{2} y}{d z^{2}}-\frac{1}{x^{2}} \frac{d y}{d z} $$ (b) Show that the Euler equation becomes $$ \frac{d^{2} y}{d z^{2}}+(\alpha-1) \frac{d y}{d z}+\beta y=0 $$ Letting \(r_{1}\) and \(r_{2}\) denote the roots of \(r^{2}+(\alpha-1) r+\beta=0\), show that (c) If \(r_{1}\) and \(r_{2}\) are real and different, then $$ y=c_{1} e^{r_{1} z}+c_{2} e^{r_{2} z}=c_{1} x^{r_{1}}+c_{2} x^{r_{2}} $$ (d) If \(r_{1}\) and \(r_{2}\) are real and equal, then $$ y=\left(c_{1}+c_{2} z\right) e^{r_{1} z}=\left(c_{1}+c_{2} \ln x\right) x^{r_{1}} $$ (e) If \(r_{1}\) and \(r_{2}\) are complex conjugates, \(r_{1}=\lambda+i \mu,\) then $$ y=e^{\lambda z}\left[c_{1} \cos (\mu z)+c_{2} \sin (\mu z)\right]=x^{\lambda}\left[c_{1} \cos (\mu \ln x)+c_{2} \sin (\mu \ln x)\right] $$
Determine the general solution of the given differential equation that is valid in any interval not including the singular point. \((x-2)^{2} y^{\prime \prime}+5(x-2) y^{\prime}+8 y=0\)
Find all singular points of the given equation and determine whether each one is regular or irregular. \(\left(x^{2}+x-2\right) y^{\prime \prime}+(x+1) y^{\prime}+2 y=0\)
The Laguerre \(^{11}\) differential equation is $$ x y^{\prime \prime}+(1-x) y^{\prime}+\lambda y=0 $$ Show that \(x=0\) is a regular singular point. Determine the indicial equation, its roots, the recurrence relation, and one solution \((x>0) .\) Show that if \(\lambda=m,\) a positive integer, this solution reduces to a polynomial. When properly normalized this polynomial is known as the Laguerre polynomial, \(L_{m}(x) .\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.