Chapter 5: Problem 31
Suppose that \(x^{r}_{1}\) and \(x^{r_{2}}\) are solutions of an Euler equation for \(x>0,\) where \(r_{1} \neq r_{2},\) and \(r_{1}\) is an integer. According to Eq. ( 24) the general solution in any interval not containing the origin is \(y=c_{1}|x|^{r_{1}}+c_{2}|x|^{r_{2}} .\) Show that the general solution can also be written as \(y=k_{1} x^{r}_{1}+k_{2}|x|^{r_{2}} .\) Hint: Show by a proper choice of constants that the expressions are identical for \(x>0,\) and by a different choice of constants that they are identical for \(x<0 .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.