Chapter 5: Problem 27
Rewrite the given expression as a sum whose generic term involves \(x^{n} .\) $$ x \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n} $$
Chapter 5: Problem 27
Rewrite the given expression as a sum whose generic term involves \(x^{n} .\) $$ x \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind all singular points of the given equation and determine whether each one is regular or irregular. \(y^{\prime \prime}+(\ln |x|) y^{\prime}+3 x y=0\)
Determine the general solution of the given differential equation that is valid in any interval not including the singular point. \((x-1)^{2} y^{\prime \prime}+8(x-1) y^{\prime}+12 y=0\)
It can be shown that \(J_{0}\) has infinitely many zeros for \(x>0 .\) In particular, the first three zeros are approximately \(2.405,5.520, \text { and } 8.653 \text { (see figure } 5.8 .1) .\) Let \(\lambda_{j}, j=1,2,3, \ldots,\) denote the zeros of \(J_{0}\) it follows that $$ J_{0}\left(\lambda_{j} x\right)=\left\\{\begin{array}{ll}{1,} & {x=0} \\ {0,} & {x=1}\end{array}\right. $$ Verify that \(y=J_{0}(\lambda, x)\) satisfies the differential equation $$ y^{\prime \prime}+\frac{1}{x} y^{\prime}+\lambda_{j}^{2} y=0, \quad x>0 $$ Ilence show that $$ \int_{0}^{1} x J_{0}\left(\lambda_{i} x\right) J_{0}\left(\lambda_{j} x\right) d x=0 \quad \text { if } \quad \lambda_{i} \neq \lambda_{j} $$ This important property of \(J_{0}\left(\lambda_{i} x\right),\) known as the orthogonality property, is useful in solving boundary value problems. Hint: Write the differential equation for \(J_{0}(\lambda, x)\). Multiply it by \(x J_{0}\left(\lambda_{y} x\right)\) and subtract it from \(x J_{0}\left(\lambda_{t} x\right)\) times the differential equation for \(J_{0}(\lambda, x)\). Then integrate from 0 to \(1 .\)
Show that the given differential equation has a regular singular point at \(x=0 .\) Determine the indicial equation, the recurrence relation, and the roots of the indicial equation. Find the series solution \((x>0)\) corresponding to the larger root. If the roots are unequal and do not differ by an integer, find the series solution corresponding to the smaller root also. \(x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+(x+3) y=0\)
Use the results of Problem 21 to determine whether the point at infinity is an ordinary point, a regular singular point, or an irregular singular point of the given differential equation. \(x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.