Chapter 5: Problem 22
The Legendre Equation. Problems 22 through 29 deal with the Legendre equation $$ \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0 $$ As indicated in Example \(3,\) the point \(x=0\) is an ordinaty point of this equation, and the distance from the origin to the nearest zero of \(P(x)=1-x^{2}\) is 1 . Hence the radius of convergence of series solutions about \(x=0\) is at least 1 . Also notice that it is necessary to consider only \(\alpha>-1\) because if \(\alpha \leq-1\), then the substitution \(\alpha=-(1+\gamma)\) where \(\gamma \geq 0\) leads to the Legendre equation \(\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\gamma(\gamma+1) y=0\) Show that two linearly independent solutions of the Legendre equation for \(|x|<1\) are $$ \begin{aligned} y_{1}(x)=& 1+\sum_{m=1}^{\infty}(-1)^{m} \\ & \times \frac{\alpha(\alpha-2)(\alpha-4) \cdots(\alpha-2 m+2)(\alpha+1)(\alpha+3) \cdots(\alpha+2 m-1)}{(2 m) !} x^{2 m} \\ y_{2}(x)=& x+\sum_{m=1}^{\infty}(-1)^{m} \\ & \times \frac{(\alpha-1)(\alpha-3) \cdots(\alpha-2 m+1)(\alpha+2)(\alpha+4) \cdots(\alpha+2 m)}{(2 m+1) !} x^{2 m+1} \end{aligned} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.