Chapter 5: Problem 20
Consider the differential equation $$ x^{3} y^{\prime \prime}+\alpha x y^{\prime}+\beta y=0 $$ where \(\alpha\) and \(\beta\) are real constants and \(\alpha \neq 0\). (a) Show that \(x=0\) is an irregular singular point. (b) By attempting to determine a solution of the form \(\sum_{n=0}^{\infty} a_{n} x^{r+n},\) show that the indicial equation for \(r\) is linear, and consequently there is only one formal solution of the assumed form. (c) Show that if \(\beta / \alpha=-1,0,1,2, \ldots,\) then the formal series solution terminates and therefore is an actual solution. For other values of \(\beta / \alpha\) show that the formal series solution has a zero radius of convergence, and so does not represent an actual solution in any interval.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.