Chapter 5: Problem 2
Show that the given differential equation has a regular singular point at \(x=0 .\) Determine the indicial equation, the recurrence relation, and the roots of the indicial equation. Find the series solution \((x>0)\) corresponding to the larger root. If the roots are unequal and do not differ by an integer, find the series solution corresponding to the smaller root also. \(x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{9}\right) y=0\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.