Chapter 5: Problem 19
Verify the given equation. $$ \sum_{n=0}^{\infty} a_{n}(x-1)^{n+1}=\sum_{n=1}^{\infty} a_{n-1}(x-1)^{n} $$
Chapter 5: Problem 19
Verify the given equation. $$ \sum_{n=0}^{\infty} a_{n}(x-1)^{n+1}=\sum_{n=1}^{\infty} a_{n-1}(x-1)^{n} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the general solution of the given differential equation that is valid in any interval not including the singular point. \(x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0\)
Show that the given differential equation has a regular singular point at \(x=0,\) and determine two linearly independent solutions for \(x>0 .\) $$ x^{2} y^{\prime \prime}+x y^{\prime}+2 x y=0 $$
The Legendre Equation. Problems 22 through 29 deal with the Legendre equation $$ \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0 $$ As indicated in Example \(3,\) the point \(x=0\) is an ordinaty point of this equation, and the distance from the origin to the nearest zero of \(P(x)=1-x^{2}\) is 1 . Hence the radius of convergence of series solutions about \(x=0\) is at least 1 . Also notice that it is necessary to consider only \(\alpha>-1\) because if \(\alpha \leq-1\), then the substitution \(\alpha=-(1+\gamma)\) where \(\gamma \geq 0\) leads to the Legendre equation \(\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\gamma(\gamma+1) y=0\) It can be shown that the general formula for \(P_{n}(x)\) is $$ P_{n}(x)=\frac{1}{2^{n}} \sum_{k=0}^{\ln / 2-} \frac{(-1)^{k}(2 n-2 k) !}{k !(n-k) !(n-2 k) !} x^{n-2 k} $$ where \([n / 2]\) denotes the greatest integer less than or equal to \(n / 2 .\) By observing the form of \(P_{n}(x)\) for \(n\) even and \(n\) odd, show that \(P_{n}(-1)=(-1)^{n} .\)
Find the solution of the given initial value problem. Plot the graph of the solution and describe how the solution behaves as \(x \rightarrow 0\). \(x^{2} y^{\prime \prime}+3 x y^{\prime}+5 y=0, \quad y(1)=1, \quad y^{\prime}(1)=-1\)
Find all singular points of the given equation and determine whether each one is regular or irregular. \(\left(1-x^{2}\right)^{2} y^{\prime \prime}+x(1-x) y^{\prime}+(1+x) y=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.