Chapter 5: Problem 17
Given that \(y=\sum_{n=0}^{\infty} n x^{n},\) compute \(y^{\prime}\) and \(y^{\prime \prime}\) and write out the first four terms of each series as well as the coefficient of \(x^{n}\) in the general term.
Chapter 5: Problem 17
Given that \(y=\sum_{n=0}^{\infty} n x^{n},\) compute \(y^{\prime}\) and \(y^{\prime \prime}\) and write out the first four terms of each series as well as the coefficient of \(x^{n}\) in the general term.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe Legendre Equation. Problems 22 through 29 deal with the Legendre equation $$ \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0 $$ As indicated in Example \(3,\) the point \(x=0\) is an ordinaty point of this equation, and the distance from the origin to the nearest zero of \(P(x)=1-x^{2}\) is 1 . Hence the radius of convergence of series solutions about \(x=0\) is at least 1 . Also notice that it is necessary to consider only \(\alpha>-1\) because if \(\alpha \leq-1\), then the substitution \(\alpha=-(1+\gamma)\) where \(\gamma \geq 0\) leads to the Legendre equation \(\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\gamma(\gamma+1) y=0\) It can be shown that the general formula for \(P_{n}(x)\) is $$ P_{n}(x)=\frac{1}{2^{n}} \sum_{k=0}^{\ln / 2-} \frac{(-1)^{k}(2 n-2 k) !}{k !(n-k) !(n-2 k) !} x^{n-2 k} $$ where \([n / 2]\) denotes the greatest integer less than or equal to \(n / 2 .\) By observing the form of \(P_{n}(x)\) for \(n\) even and \(n\) odd, show that \(P_{n}(-1)=(-1)^{n} .\)
The Legendre Equation. Problems 22 through 29 deal with the Legendre equation $$ \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0 $$ As indicated in Example \(3,\) the point \(x=0\) is an ordinaty point of this equation, and the distance from the origin to the nearest zero of \(P(x)=1-x^{2}\) is 1 . Hence the radius of convergence of series solutions about \(x=0\) is at least 1 . Also notice that it is necessary to consider only \(\alpha>-1\) because if \(\alpha \leq-1\), then the substitution \(\alpha=-(1+\gamma)\) where \(\gamma \geq 0\) leads to the Legendre equation \(\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\gamma(\gamma+1) y=0\) Show that two linearly independent solutions of the Legendre equation for \(|x|<1\) are $$ \begin{aligned} y_{1}(x)=& 1+\sum_{m=1}^{\infty}(-1)^{m} \\ & \times \frac{\alpha(\alpha-2)(\alpha-4) \cdots(\alpha-2 m+2)(\alpha+1)(\alpha+3) \cdots(\alpha+2 m-1)}{(2 m) !} x^{2 m} \\ y_{2}(x)=& x+\sum_{m=1}^{\infty}(-1)^{m} \\ & \times \frac{(\alpha-1)(\alpha-3) \cdots(\alpha-2 m+1)(\alpha+2)(\alpha+4) \cdots(\alpha+2 m)}{(2 m+1) !} x^{2 m+1} \end{aligned} $$
Use the results of Problem 21 to determine whether the point at infinity is an ordinary point, a regular singular point, or an irregular singular point of the given differential equation. \(y^{\prime \prime}-2 x y^{\prime}+\lambda y=0, \quad\) Hermite equation
First Order Equations. The series methods discussed in this section are directly applicable to the first order linear differential equation \(P(x) y^{\prime}+Q(x) y=0\) at a point \(x_{0}\), if the function \(p=Q / P\) has a Taylor series expansion about that point. Such a point is called an ordinary point, and further, the radius of convergence of the series \(y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\) is at least as large as the radius of convergence of the series for \(Q / P .\) In each of Problems 16 through 21 solve the given differential equation by a series in powers of \(x\) and verify that \(a_{0}\) is arbitrary in each case. Problems 20 and 21 involve nonhomogeneous differential equations to which series methods can be easily extended. Where possible, compare the series solution with the solution obtained by using the methods of Chapter 2 . $$ y^{\prime}=e^{x^{2}} y, \quad \text { three terms only } $$
First Order Equations. The series methods discussed in this section are directly applicable to the first order linear differential equation \(P(x) y^{\prime}+Q(x) y=0\) at a point \(x_{0}\), if the function \(p=Q / P\) has a Taylor series expansion about that point. Such a point is called an ordinary point, and further, the radius of convergence of the series \(y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\) is at least as large as the radius of convergence of the series for \(Q / P .\) In each of Problems 16 through 21 solve the given differential equation by a series in powers of \(x\) and verify that \(a_{0}\) is arbitrary in each case. Problems 20 and 21 involve nonhomogeneous differential equations to which series methods can be easily extended. Where possible, compare the series solution with the solution obtained by using the methods of Chapter 2 . $$ y^{\prime}-y=x^{2} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.