Chapter 5: Problem 17
Given that \(y=\sum_{n=0}^{\infty} n x^{n},\) compute \(y^{\prime}\) and \(y^{\prime \prime}\) and write out the first four terms of each series as well as the coefficient of \(x^{n}\) in the general term.
Chapter 5: Problem 17
Given that \(y=\sum_{n=0}^{\infty} n x^{n},\) compute \(y^{\prime}\) and \(y^{\prime \prime}\) and write out the first four terms of each series as well as the coefficient of \(x^{n}\) in the general term.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind all the regular singular points of the given differential equation. Determine the indicial equation and the exponents at the singularity for each regular singular point. \(y^{\prime \prime}+4 x y^{\prime}+6 y=0\)
Determine the general solution of the given differential equation that is valid in any interval not including the singular point. \((x-2)^{2} y^{\prime \prime}+5(x-2) y^{\prime}+8 y=0\)
Referring to Problem \(14,\) use the method of reduction of order to show that the second solution of the Bessel equation of order zero contains a logarithmic term. Hint: If \(y_{2}(x)=J_{0}(x) v(x)\), then $$ y_{2}(x)=J_{0}(x) \int \frac{d x}{x\left[J_{0}(x)\right]^{2}} $$ Find the first term in the series expansion of \(1 / x\left[J_{0}(x)\right]^{2}\)
Show that the Bessel equation of order one-half, $$ x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0, \quad x>0 $$ can be reduced to the equation $$ v^{\prime \prime}+v=0 $$ by the change of dependent variable \(y=x^{-1 / 2} v(x)\). From this conclude that \(y_{1}(x)=\) \(x^{-1 / 2} \cos x\) and \(y_{2}(x)=x^{-1 / 2} \sin x\) are solutions of the Bessel equation of order one-half.
Find all the regular singular points of the given differential equation. Determine the indicial equation and the exponents at the singularity for each regular singular point. \(x(x-1) y^{\prime \prime}+6 x^{2} y^{\prime}+3 y=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.