Chapter 5: Problem 14
The Bessel equation of order zero is $$ x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0 $$ Show that \(x=0\) is a regular singular point; that the roots of the indicial equation are \(r_{1}=r_{2}=0 ;\) and that one solution for \(x>0\) is $$ J_{0}(x)=1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n !)^{2}} $$ Show that the series converges for all \(x .\) The function \(J_{0}\) is known as the Bessel function of the first kind of order zero.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Regular Singular Point
- The coefficients of the differential equation are analytic at \(x = 0\).
- The point must not be an ordinary point.