Chapter 5: Problem 10
Determine the general solution of the given differential equation that is valid in any interval not including the singular point. \((x-2)^{2} y^{\prime \prime}+5(x-2) y^{\prime}+8 y=0\)
Chapter 5: Problem 10
Determine the general solution of the given differential equation that is valid in any interval not including the singular point. \((x-2)^{2} y^{\prime \prime}+5(x-2) y^{\prime}+8 y=0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn this section we showed that one solution of Bessel's equation of order zero, $$ L[y]=x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0 $$ is \(J_{0}\), where \(J_{0}(x)\) is given by Fa. ( 7) with \(a_{0}=1\). According to Theorem 5.7 .1 a second solution has the form \((x>0)\) $$ y_{2}(x)=J_{0}(x) \ln x+\sum_{n=1}^{\infty} b_{n} x^{n} $$ (a) Show that $$ L\left[y_{2}\right](x)=\sum_{n=2}^{\infty} n(n-1) b_{n} x^{n}+\sum_{n=1}^{\infty} n b_{n} x^{n}+\sum_{n=1}^{\infty} b_{n} x^{n+2}+2 x J_{0}^{\prime}(x) $$ (b) Substituting the series representation for \(J_{0}(x)\) in Eq. (i), show that $$ b_{1} x+2^{2} b_{2} x^{2}+\sum_{n=3}^{\infty}\left(n^{2} b_{n}+b_{n-2}\right) x^{n}=-2 \sum_{n=1}^{\infty} \frac{(-1)^{n} 2 n x^{2 n}}{2^{2 n}(n !)^{2}} $$ (c) Note that only even powers of \(x\) appear on the right side of Eq. (ii). Show that \(b_{1}=b_{3}=b_{5}=\cdots=0, b_{2}=1 / 2^{2}(1 !)^{2},\) and that $$ (2 n)^{2} b_{2 n}+b_{2 n-2}=-2(-1)^{n}(2 n) / 2^{2 n}(n !)^{2}, \quad n=2,3,4, \ldots $$ Deduce that $$ b_{4}=-\frac{1}{2^{2} 4^{2}}\left(1+\frac{1}{2}\right) \quad \text { and } \quad b_{6}=\frac{1}{2^{2} 4^{2} 6^{2}}\left(1+\frac{1}{2}+\frac{1}{3}\right) $$ The general solution of the recurrence relation is \(b_{2 n}=(-1)^{n+1} H_{n} / 2^{2 n}(n !)^{2}\). Substituting for \(b_{n}\) in the expression for \(y_{2}(x)\) we obtain the solution given in \(\mathrm{Eq} .(10) .\)
First Order Equations. The series methods discussed in this section are directly applicable to the first order linear differential equation \(P(x) y^{\prime}+Q(x) y=0\) at a point \(x_{0}\), if the function \(p=Q / P\) has a Taylor series expansion about that point. Such a point is called an ordinary point, and further, the radius of convergence of the series \(y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\) is at least as large as the radius of convergence of the series for \(Q / P .\) In each of Problems 16 through 21 solve the given differential equation by a series in powers of \(x\) and verify that \(a_{0}\) is arbitrary in each case. Problems 20 and 21 involve nonhomogeneous differential equations to which series methods can be easily extended. Where possible, compare the series solution with the solution obtained by using the methods of Chapter 2 . $$ y^{\prime}-y=0 $$
Find all the regular singular points of the given differential equation. Determine the indicial equation and the exponents at the singularity for each regular singular point. \(x^{2} y^{\prime \prime}+\frac{1}{2}(x+\sin x) y^{\prime}+y=0\)
Find all singular points of the given equation and determine whether each one is regular or irregular. \((x+3) y^{\prime \prime}-2 x y^{\prime}+\left(1-x^{2}\right) y=0\)
The Euler equation \(x^{2} y^{\prime \prime}+\) \(\alpha x y^{\prime}+\beta y=0\) can be reduced to an equation with constant coefficients by a change of the independent variable. Let \(x=e^{z},\) or \(z=\ln x,\) and consider only the interval \(x>0 .\) (a) Show that $$ \frac{d y}{d x}=\frac{1}{x} \frac{d y}{d z} \quad \text { and } \quad \frac{d^{2} y}{d x^{2}}=\frac{1}{x^{2}} \frac{d^{2} y}{d z^{2}}-\frac{1}{x^{2}} \frac{d y}{d z} $$ (b) Show that the Euler equation becomes $$ \frac{d^{2} y}{d z^{2}}+(\alpha-1) \frac{d y}{d z}+\beta y=0 $$ Letting \(r_{1}\) and \(r_{2}\) denote the roots of \(r^{2}+(\alpha-1) r+\beta=0\), show that (c) If \(r_{1}\) and \(r_{2}\) are real and different, then $$ y=c_{1} e^{r_{1} z}+c_{2} e^{r_{2} z}=c_{1} x^{r_{1}}+c_{2} x^{r_{2}} $$ (d) If \(r_{1}\) and \(r_{2}\) are real and equal, then $$ y=\left(c_{1}+c_{2} z\right) e^{r_{1} z}=\left(c_{1}+c_{2} \ln x\right) x^{r_{1}} $$ (e) If \(r_{1}\) and \(r_{2}\) are complex conjugates, \(r_{1}=\lambda+i \mu,\) then $$ y=e^{\lambda z}\left[c_{1} \cos (\mu z)+c_{2} \sin (\mu z)\right]=x^{\lambda}\left[c_{1} \cos (\mu \ln x)+c_{2} \sin (\mu \ln x)\right] $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.