Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Express the given complex number in the form \(R(\cos \theta+\) \(i \sin \theta)=R e^{i \theta}\) $$ -i $$

Short Answer

Expert verified
Answer: The polar and exponential form for the complex number -i is 1e^(i(3π/2)).

Step by step solution

01

Find the magnitude (R)

Using the polar representation of complex numbers, R is the magnitude of the complex number. For the complex number, which is given as \(-i\), we can write it as \(0-1i.\) Now, use the formula \(R=\sqrt{a^2+b^2}\) where a is the real part, and b is the imaginary part. In our case, a = 0 and b = -1. So, $$R=\sqrt{(0)^2+(-1)^2} = \sqrt{0+1} = \sqrt{1} =1.$$
02

Find the angle (θ)

To find the angle (θ), we can use the formula \(\theta=\tan^{-1}\frac{b}{a}\), where a is the real part and b is the imaginary part. Keep in mind that we need to consider which quadrant the complex number lies in. Since our complex number is \(-i\), it is in the third quadrant (negative real axis and negative imaginary axis). In our case, a = 0 and b = -1. So, $$\theta=\tan^{-1}\frac{-1}{0}.$$ Since the division by zero is undefined and we know that the complex number is on the negative imaginary axis, we can determine that $$\theta=\frac{3\pi}{2}$$ using the knowledge of the coordinates system and trigonometry.
03

Write the complex number in the desired form

Now that we have the magnitude (R) and the angle (θ), we can write the complex number in the required form: $$R(\cos\theta+\( \)i\sin\theta)=R e^{i\theta}.$$ For our case, R = 1 and θ = \(\frac{3\pi}{2}\). So, $$1(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}) = 1e^{i\frac{3\pi}{2}}.$$ Thus, the desired form for the complex number \(-i\) is: $$-i = 1e^{i\frac{3\pi}{2}}.$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the nonhomogeneous \(n\) th order linear differential equation $$ a_{0} y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n} y=g(t) $$ where \(a_{0}, \ldots, a_{n}\) are constants. Verify that if \(g(t)\) is of the form $$ e^{\alpha t}\left(b_{0} t^{m}+\cdots+b_{m}\right) $$ then the substitution \(y=e^{\alpha t} u(t)\) reduces the preceding equation to the form $$ k_{0} u^{(n)}+k_{1} u^{(n-1)}+\cdots+k_{n} u=b_{0} t^{m}+\cdots+b_{m} $$ where \(k_{0}, \ldots, k_{n}\) are constants. Determine \(k_{0}\) and \(k_{n}\) in terms of the \(a^{\prime}\) 's and \(\alpha .\) Thus the problem of determining a particular solution of the original equation is reduced to the simpler problem of determining a particular solution of an equation with constant coefficients and a polynomial for the nonhomogeneous term.

We consider another way of arriving at the proper form of \(Y(t)\) for use in the method of undetermined coefficients. The procedure is based on the observation that exponential, polynomial, or sinusoidal terms (or sums and products of such terms) can be viewed as solutions of certain linear homogeneous differential equations with constant coefficients. It is convenient to use the symbol \(D\) for \(d / d t\). Then, for example, \(e^{-t}\) is a solution of \((D+1) y=0 ;\) the differential operator \(D+1\) is said to annihilate, or to be an annihilator of, \(e^{-t}\). Similarly, \(D^{2}+4\) is an annihilator of \(\sin 2 t\) or \(\cos 2 t,\) \((D-3)^{2}=D^{2}-6 D+9\) is an annihilator of \(e^{3 t}\) or \(t e^{3 t},\) and so forth. Consider the problem of finding the form of the particular solution \(Y(t)\) of $$ (D-2)^{3}(D+1) Y=3 e^{2 t}-t e^{-t} $$ where the left side of the equation is written in a form corresponding to the factorization of the characteristic polynomial. (a) Show that \(D-2\) and \((D+1)^{2},\) respectively, are annihilators of the terms on the right side of Eq. and that the combined operator \((D-2)(D+1)^{2}\) annihilates both terms on the right side of Eq. (i) simultaneously. (b) Apply the operator \((D-2)(D+1)^{2}\) to Eq. (i) and use the result of Problem 20 to obtain $$ (D-2)^{4}(D+1)^{3} Y=0 $$ Thus \(Y\) is a solution of the homogeneous equation (ii). By solving Eq. (ii), show that $$ \begin{aligned} Y(t)=c_{1} e^{2 t} &+c_{2} t e^{2 t}+c_{3} t^{2} e^{2 t}+c_{4} t^{3} e^{2 t} \\ &+c_{5} e^{-t}+c_{6} t e^{-t}+c_{7} t^{2} e^{-t} \end{aligned} $$ where \(c_{1}, \ldots, c_{7}\) are constants, as yet undetermined. (c) Observe that \(e^{2 t}, t e^{2 t}, t^{2} e^{2 t},\) and \(e^{-t}\) are solutions of the homogeneous equation corresponding to Eq. (i); hence these terms are not useful in solving the nonhomogeneous equation. Therefore, choose \(c_{1}, c_{2}, c_{3},\) and \(c_{5}\) to be zero in Eq. (iii), so that $$ Y(t)=c_{4} t^{3} e^{2 t}+c_{6} t e^{-t}+c_{7} t^{2} e^{-t} $$ This is the form of the particular solution \(Y\) of Eq. (i). The values of the coefficients \(c_{4}, c_{6},\) and \(c_{7}\) can be found by substituting from Eq. (iv) in the differential equation (i).

Express the given complex number in the form \(R(\cos \theta+\) \(i \sin \theta)=R e^{i \theta}\) $$ 1+i $$

determine whether the given set of functions is linearly dependent or linearly independent. If they are linearly dependent, find a linear relation among them. $$ f_{1}(t)=2 t-3, \quad f_{2}(t)=2 t^{2}+1, \quad f_{3}(t)=3 t^{2}+t $$

Find the solution of the given initial value problem. Then plot a graph of the solution. \(y^{\mathrm{iv}}+2 y^{\prime \prime}+y=3 t+4, \quad y(0)=y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=y^{\prime \prime \prime}(0)=1\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free