Chapter 4: Problem 25
The purpose of this problem is to show that if \(W\left(y_{1}, \ldots, y_{n}\right)\left(t_{0}\right) \neq 0\) for some \(t_{0}\) in an interval \(I,\) then \(y_{1}, \ldots, y_{n}\) are linearly independent on \(I,\) and if they are linearly independent and solutions of $$ L(y]=y^{(n)}+p_{1}(t) y^{(n-1)}+\cdots+p_{n}(t) y=0 $$ on \(I,\) then \(W\left(y_{1}, \ldots, y_{n}\right)\) is nowhere zero in \(I .\) (a) Suppose that \(W\left(y_{1}, \ldots, y_{n}\right)\left(t_{0}\right) \neq 0,\) and suppose that $$ c_{1} y_{1}(t)+\cdots+c_{n} y_{n}(t)=0 $$ for all \(t\) in \(I\). By writing the equations corresponding to the first \(n-1\) derivatives of Fa. (ii) at \(t_{0}\), show that \(c_{1}=\cdots=c_{n}=0 .\) Therefore, \(y_{1}, \ldots, y_{n}\) are linearly independent. (b) Suppose that \(y_{1}, \ldots, y_{n}\) are linearly independent solutions of Eq. (i). If \(W\left(y_{1}, \ldots, y_{n}\right)\left(t_{0}\right)=0\) for some \(t_{0},\) show that there is a nonzero solution of Eq. (i) satisfying the initial conditions $$ y\left(t_{0}\right)=y^{\prime}\left(t_{0}\right)=\cdots=y^{(n-1)}\left(t_{0}\right)=0 $$ since \(y=0\) is a solution of this initial value problem, the uniqueness part of Theorem 4. 1. I yields a contradiction. Thus \(W\) is never zero.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.