Chapter 4: Problem 10
Find the solution of the given initial value problem. Then plot a graph of the solution. \(y^{\mathrm{iv}}+2 y^{\prime \prime}+y=3 t+4, \quad y(0)=y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=y^{\prime \prime \prime}(0)=1\)
Chapter 4: Problem 10
Find the solution of the given initial value problem. Then plot a graph of the solution. \(y^{\mathrm{iv}}+2 y^{\prime \prime}+y=3 t+4, \quad y(0)=y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=y^{\prime \prime \prime}(0)=1\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the general solution of the given differential equation. $$ y^{\text {iv }}-7 y^{\prime \prime \prime}+6 y^{\prime \prime}+30 y^{\prime}-36 y=0 $$
Find the solution of the given initial value problem and plot its graph. How does the solution behave as \(t \rightarrow \infty ?\) $$ \begin{array}{l}{2 y^{\mathrm{iv}}-y^{\prime \prime \prime}+4 y^{\prime}+4 y=0 ; \quad y(0)=-2, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=-2} \\\ {y^{\prime \prime \prime}(0)=0}\end{array} $$
Find the general solution of the given differential equation. $$ y^{\mathrm{vi}}-3 y^{\mathrm{iv}}+3 y^{\prime \prime}-y=0 $$
Find the solution of the given initial value problem. Then plot a graph of the solution. \(y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=t+e^{t}, \quad y(0)=1, \quad y^{\prime}(0)=-\frac{1}{4}, \quad y^{\prime \prime}(0)=-\frac{3}{2}\)
Use Abel’s formula (Problem 20) to find the Wronskian of a fundamental set of solutions of the given differential equation. $$ y^{\mathrm{iv}}+y=0 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.