Chapter 3: Problem 6
find the Wronskian of the given pair of functions. $$ \cos ^{2} \theta, \quad 1+\cos 2 \theta $$
Chapter 3: Problem 6
find the Wronskian of the given pair of functions. $$ \cos ^{2} \theta, \quad 1+\cos 2 \theta $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the general solution of the given differential equation. $$ y^{\prime \prime}+5 y^{\prime}=0 $$
In the spring-mass system of Problem \(31,\) suppose that the spring force is not given by Hooke's law but instead satisfies the relation $$ F_{s}=-\left(k u+\epsilon u^{3}\right) $$ where \(k>0\) and \(\epsilon\) is small but may be of either sign. The spring is called a hardening spring if \(\epsilon>0\) and a softening spring if \(\epsilon<0 .\) Why are these terms appropriate? (a) Show that the displacement \(u(t)\) of the mass from its equilibrium position satisfies the differential equation $$ m u^{\prime \prime}+\gamma u^{\prime}+k u+\epsilon u^{3}=0 $$ Suppose that the initial conditions are $$ u(0)=0, \quad u^{\prime}(0)=1 $$ In the remainder of this problem assume that \(m=1, k=1,\) and \(\gamma=0\). (b) Find \(u(t)\) when \(\epsilon=0\) and also determine the amplitude and period of the motion. (c) Let \(\epsilon=0.1 .\) Plot (a numerical approximation to) the solution. Does the motion appear to be periodic? Estimate the amplitude and period. (d) Repeat part (c) for \(\epsilon=0.2\) and \(\epsilon=0.3\) (e) Plot your estimated values of the amplitude \(A\) and the period \(T\) versus \(\epsilon\). Describe the way in which \(A\) and \(T\), respectively, depend on \(\epsilon\). (f) Repeat parts (c), (d), and (e) for negative values of \(\epsilon .\)
Use the method outlined in Problem 28 to solve the given differential equation. $$ t y^{\prime \prime}-(1+t) y^{\prime}+y=t^{2} e^{2 t}, \quad t>0 ; \quad y_{1}(t)=1+t \quad(\text { see Problem } 15) $$
Consider the initial value problem $$ m u^{\prime \prime}+\gamma u^{\prime}+k u=0, \quad u(0)=u_{0}, \quad u^{\prime}(0)=v_{0} $$ Assume that \(\gamma^{2}<4 k m .\) (a) Solve the initial value problem, (b) Write the solution in the form \(u(t)=R \exp (-\gamma t / 2 m) \cos (\mu t-\delta) .\) Determine \(R\) in terms of \(m, \gamma, k, u_{0},\) and \(v_{0}\). (c) Investigate the dependence of \(R\) on the damping coefficient \(\gamma\) for fixed values of the other parameters.
Use the method of variation of parameters to find a particular solution of the given differential equation. Then check your answer by using the method of undetermined coefficients. $$ y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.