Chapter 3: Problem 5
use Euler’s formula to write the given expression in the form a + ib. $$ 2^{1-i} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 3: Problem 5
use Euler’s formula to write the given expression in the form a + ib. $$ 2^{1-i} $$
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that the period of motion of an undamped vibration of a mass hanging from a vertical spring is \(2 \pi \sqrt{L / g},\) where \(L\) is the elongation of the spring due to the mass and \(g\) is the acceleration due to gravity.
The differential equation $$ x y^{\prime \prime}-(x+N) y^{\prime}+N y=0 $$ where \(N\) is a nonnegative integer, has been discussed by several authors. 6 One reason it is interesting is that it has an exponential solution and a polynomial solution. (a) Verify that one solution is \(y_{1}(x)=e^{x}\). (b) Show that a second solution has the form \(y_{2}(x)=c e^{x} \int x^{N} e^{-x} d x\). Calculate \(y_{2 (x)\) for \(N=1\) and \(N=2 ;\) convince yourself that, with \(c=-1 / N !\) $$ y_{2}(x)=1+\frac{x}{1 !}+\frac{x^{2}}{2 !}+\cdots+\frac{x^{N}}{N !} $$ Note that \(y_{2}(x)\) is exactly the first \(N+1\) terms in the Taylor series about \(x=0\) for \(e^{x},\) that is, for \(y_{1}(x) .\)
Write the given expression as a product of two trigonometric functions of different frequencies. \(\cos 9 t-\cos 7 t\)
determine \(\omega_{0}, R,\) and \(\delta\) so as to write the given expression in the form \(u=R \cos \left(\omega_{0} t-\delta\right)\) $$ u=-2 \cos \pi t-3 \sin \pi t $$
Use the method of Problem 33 to find a second independent solution of the given equation. \((x-1) y^{\prime \prime}-x y^{\prime}+y=0, \quad x>1 ; \quad y_{1}(x)=e^{x}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.