Chapter 3: Problem 41
$$ y^{\prime \prime}-3 y^{2}=0, \quad y(0)=2, \quad y^{\prime}(0)=4 $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 3: Problem 41
$$ y^{\prime \prime}-3 y^{2}=0, \quad y(0)=2, \quad y^{\prime}(0)=4 $$
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freedetermine \(\omega_{0}, R,\) and \(\delta\) so as to write the given expression in the form \(u=R \cos \left(\omega_{0} t-\delta\right)\) $$ u=-2 \cos \pi t-3 \sin \pi t $$
(a) Determine a suitable form for \(Y(t)\) if the method of undetermined coefficients is to be used. (b) Use a computer algebra system to find a particular solution of the given equation. $$ y^{\prime \prime}+4 y=t^{2} \sin 2 t+(6 t+7) \cos 2 t $$
A series circuit has a capacitor of \(0.25 \times 10^{-6}\) farad, a resistor of \(5 \times 10^{3}\) ohms, and an inductor of 1 henry. The initial charge on the capacitor is zero. If a 12 -volt battery is connected to the circuit and the circuit is closed at \(t=0,\) determine the charge on the capacitor at \(t=0.001 \mathrm{sec},\) at \(t=0.01 \mathrm{sec},\) and at any time \(t .\) Also determine the limiting charge as \(t \rightarrow \infty\)
The method of Problem 20 can be extended to second order equations with variable coefficients. If \(y_{1}\) is a known nonvanishing solution of \(y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0,\) show that a second solution \(y_{2}\) satisfies \(\left(y_{2} / y_{1}\right)^{\prime}=W\left(y_{1}, y_{2}\right) / y_{1}^{2},\) where \(W\left(y_{1}, y_{2}\right)\) is the Wronskian \(\left. \text { of }\left.y_{1} \text { and } y_{2} \text { . Then use Abel's formula [Eq. ( } 8\right) \text { of Section } 3.3\right]\) to determine \(y_{2}\).
determine \(\omega_{0}, R,\) and \(\delta\) so as to write the given expression in the form \(u=R \cos \left(\omega_{0} t-\delta\right)\) $$ u=3 \cos 2 t+4 \sin 2 t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.