Chapter 3: Problem 40
In each of Problems 40 through 43 solve the given initial value problem using the methods of Problems 28 through \(39 .\) $$ y^{\prime} y^{\prime \prime}=2, \quad y(0)=1, \quad y^{\prime}(0)=2 $$
Chapter 3: Problem 40
In each of Problems 40 through 43 solve the given initial value problem using the methods of Problems 28 through \(39 .\) $$ y^{\prime} y^{\prime \prime}=2, \quad y(0)=1, \quad y^{\prime}(0)=2 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn the absence of damping the motion of a spring-mass system satisfies the initial value problem $$ m u^{\prime \prime}+k u=0, \quad u(0)=a, \quad u^{\prime}(0)=b $$ (a) Show that the kinetic energy initially imparted to the mass is \(m b^{2} / 2\) and that the potential energy initially stored in the spring is \(k a^{2} / 2,\) so that initially the total energy in the system is \(\left(k a^{2}+m b^{2}\right) / 2\). (b) Solve the given initial value problem. (c) Using the solution in part (b), determine the total energy in the system at any time \(t .\) Your result should confirm the principle of conservation of energy for this system.
The position of a certain undamped spring-mass system satisfies the initial value problem $$ u^{\prime \prime}+2 u=0, \quad u(0)=0, \quad u^{\prime}(0)=2 $$ (a) Find the solution of this initial value problem. (b) Plot \(u\) versus \(t\) and \(u^{\prime}\) versus \(t\) on the same axes. (c) Plot \(u^{\prime}\) versus \(u ;\) that is, plot \(u(t)\) and \(u^{\prime}(t)\) parametrically with \(t\) as the parameter. This plot is known as a phase plot and the \(u u^{\prime}\) -plane is called the phase plane. Observe that a closed curve in the phase plane corresponds to a periodic solution \(u(t) .\) What is the direction of motion on the phase plot as \(t\) increases?
Deal with the initial value problem $$ u^{\prime \prime}+0.125 u^{\prime}+u=F(t), \quad u(0)=2, \quad u^{\prime}(0)=0 $$ (a) Plot the given forcing function \(F(t)\) versus \(t\) and also plot the solution \(u(t)\) versus \(t\) on the same set of axes. Use a \(t\) interval that is long enough so the initial transients are substantially eliminated. Observe the relation between the amplitude and phase of the forcing term and the amplitude and phase of the response. Note that \(\omega_{0}=\sqrt{k / m}=1\). (b) Draw the phase plot of the solution, that is, plot \(u^{\prime}\) versus \(u .\) \(F(t)=3 \cos (0.3 t)\)
(a) Show that the phase of the forced response of Eq. ( 1) satisfies tan \(\delta=\gamma \omega / m\left(\omega_{0}^{2}-\omega^{2}\right)\) (b) Plot the phase \(\delta\) as a function of the forcing frequency \(\omega\) for the forced response of \(u^{\prime \prime}+0.125 u^{\prime}+u=3 \cos \omega t\)
Use the method of reduction of order to find a second solution of the given differential equation. \(x y^{\prime \prime}-y^{\prime}+4 x^{3} y=0, \quad x>0 ; \quad y_{1}(x)=\sin x^{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.