Chapter 3: Problem 37
Use the method of Problem 33 to find a second independent solution of the given equation. \(x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-0.25\right) y=0, \quad x>0 ; \quad y_{1}(x)=x^{-1 / 2} \sin x\)
Chapter 3: Problem 37
Use the method of Problem 33 to find a second independent solution of the given equation. \(x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-0.25\right) y=0, \quad x>0 ; \quad y_{1}(x)=x^{-1 / 2} \sin x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the method of reduction of order to find a second solution of the given differential equation. \(x y^{\prime \prime}-y^{\prime}+4 x^{3} y=0, \quad x>0 ; \quad y_{1}(x)=\sin x^{2}\)
Assume that the system described by the equation \(m u^{\prime \prime}+\gamma u^{\prime}+k u=0\) is either critically damped or overdamped. Show that the mass can pass through the equilibrium position at most once, regardless of the initial conditions. Hint: Determine all possible values of \(t\) for which \(u=0\).
Find the general solution of the given differential equation. $$ u^{\prime \prime}+\omega_{0}^{2} u=\cos \omega_{0} t $$
Use the method of reduction of order to find a second solution of the given differential equation. \(x^{2} y^{\prime \prime}-(x-0.1875) y=0, \quad x>0 ; \quad y_{1}(x)=x^{1 / 4} e^{2 \sqrt{x}}\)
A series circuit has a capacitor of \(0.25 \times 10^{-6}\) farad and an inductor of 1 henry. If the initial charge on the capacitor is \(10^{-6}\) coulomb and there is no initial current, find the charge \(Q\) on the capacitor at any time \(t\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.