Chapter 3: Problem 33
The method of Problem 20 can be extended to second order equations with variable coefficients. If \(y_{1}\) is a known nonvanishing solution of \(y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0,\) show that a second solution \(y_{2}\) satisfies \(\left(y_{2} / y_{1}\right)^{\prime}=W\left(y_{1}, y_{2}\right) / y_{1}^{2},\) where \(W\left(y_{1}, y_{2}\right)\) is the Wronskian \(\left. \text { of }\left.y_{1} \text { and } y_{2} \text { . Then use Abel's formula [Eq. ( } 8\right) \text { of Section } 3.3\right]\) to determine \(y_{2}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.