Chapter 3: Problem 32
In the spring-mass system of Problem \(31,\) suppose that the spring force is not given by Hooke's law but instead satisfies the relation $$ F_{s}=-\left(k u+\epsilon u^{3}\right) $$ where \(k>0\) and \(\epsilon\) is small but may be of either sign. The spring is called a hardening spring if \(\epsilon>0\) and a softening spring if \(\epsilon<0 .\) Why are these terms appropriate? (a) Show that the displacement \(u(t)\) of the mass from its equilibrium position satisfies the differential equation $$ m u^{\prime \prime}+\gamma u^{\prime}+k u+\epsilon u^{3}=0 $$ Suppose that the initial conditions are $$ u(0)=0, \quad u^{\prime}(0)=1 $$ In the remainder of this problem assume that \(m=1, k=1,\) and \(\gamma=0\). (b) Find \(u(t)\) when \(\epsilon=0\) and also determine the amplitude and period of the motion. (c) Let \(\epsilon=0.1 .\) Plot (a numerical approximation to) the solution. Does the motion appear to be periodic? Estimate the amplitude and period. (d) Repeat part (c) for \(\epsilon=0.2\) and \(\epsilon=0.3\) (e) Plot your estimated values of the amplitude \(A\) and the period \(T\) versus \(\epsilon\). Describe the way in which \(A\) and \(T\), respectively, depend on \(\epsilon\). (f) Repeat parts (c), (d), and (e) for negative values of \(\epsilon .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.