Chapter 3: Problem 31
The differential equation $$ x y^{\prime \prime}-(x+N) y^{\prime}+N y=0 $$ where \(N\) is a nonnegative integer, has been discussed by several authors. 6 One reason it is interesting is that it has an exponential solution and a polynomial solution. (a) Verify that one solution is \(y_{1}(x)=e^{x}\). (b) Show that a second solution has the form \(y_{2}(x)=c e^{x} \int x^{N} e^{-x} d x\). Calculate \(y_{2 (x)\) for \(N=1\) and \(N=2 ;\) convince yourself that, with \(c=-1 / N !\) $$ y_{2}(x)=1+\frac{x}{1 !}+\frac{x^{2}}{2 !}+\cdots+\frac{x^{N}}{N !} $$ Note that \(y_{2}(x)\) is exactly the first \(N+1\) terms in the Taylor series about \(x=0\) for \(e^{x},\) that is, for \(y_{1}(x) .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.