Chapter 3: Problem 29
Use the method outlined in Problem 28 to solve the given differential equation. $$ t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=4 t^{2}, \quad t>0 ; \quad y_{1}(t)=t $$
Chapter 3: Problem 29
Use the method outlined in Problem 28 to solve the given differential equation. $$ t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=4 t^{2}, \quad t>0 ; \quad y_{1}(t)=t $$
All the tools & learning materials you need for study success - in one app.
Get started for freeBy choosing the lower limitofation in Eq. ( 28 ) inthe textas the initial point \(t_{0}\), show that \(Y(t)\) becomes $$ Y(t)=\int_{t_{0}}^{t} \frac{y_{1}(s) y_{2}(t)-y_{1}(s) y_{2}(s)}{y_{1}(s) y_{2}^{2}(s)-y_{1}^{\prime}(s) y_{2}(s)} g(s) d s $$ Show that \(Y(t)\) is asolution of the initial value problem $$ L[y], \quad y\left(t_{0}\right)=0, \quad y^{\prime}\left(t_{0}\right)=0 $$ Thus \(Y\) can be identific d writh \(v\) in Problem \(21 .\)
determine \(\omega_{0}, R,\) and \(\delta\) so as to write the given expression in the form \(u=R \cos \left(\omega_{0} t-\delta\right)\) $$ u=4 \cos 3 t-2 \sin 3 t $$
Use the method of variation of parameters to find a particular solution of the given differential equation. Then check your answer by using the method of undetermined coefficients. $$ 4 y^{\prime \prime}-4 y^{\prime}+y=16 e^{t / 2} $$
Consider the initial value problem $$ u^{\prime \prime}+\gamma u^{\prime}+u=0, \quad u(0)=2, \quad u^{\prime}(0)=0 $$ We wish to explore how long a time interval is required for the solution to become "negligible" and how this interval depends on the damping coefficient \(\gamma\). To be more precise, let us seek the time \(\tau\) such that \(|u(t)|<0.01\) for all \(t>\tau .\) Note that critical damping for this problem occurs for \(\gamma=2\) (a) Let \(\gamma=0.25\) and determine \(\tau,\) or at least estimate it fairly accurately from a plot of the solution. (b) Repeat part (a) for several other values of \(\gamma\) in the interval \(0<\gamma<1.5 .\) Note that \(\tau\) steadily decreases as \(\gamma\) increases for \(\gamma\) in this range. (c) Obtain a graph of \(\tau\) versus \(\gamma\) by plotting the pairs of values found in parts (a) and (b). Is the graph a smooth curve? (d) Repeat part (b) for values of \(\gamma\) between 1.5 and \(2 .\) Show that \(\tau\) continues to decrease until \(\gamma\) reaches a certain critical value \(\gamma_{0}\), after which \(\tau\) increases. Find \(\gamma_{0}\) and the corresponding minimum value of \(\tau\) to two decimal places. (e) Another way to proceed is to write the solution of the initial value problem in the form (26). Neglect the cosine factor and consider only the exponential factor and the amplitude \(R\). Then find an expression for \(\tau\) as a function of \(\gamma\). Compare the approximate results obtained in this way with the values determined in parts (a), (b), and (d).
A spring-mass system with a hardening spring (Problem 32 of Section 3.8 ) is acted on by a periodic external force. In the absence of damping, suppose that the displacement of the mass satisfies the initial value problem $$ u^{\prime \prime}+u+\frac{1}{5} u^{3}=\cos \omega t, \quad u(0)=0, \quad u^{\prime}(0)=0 $$ (a) Let \(\omega=1\) and plot a computer-generated solution of the given problem. Does the system exhibit a beat? (b) Plot the solution for several values of \(\omega\) between \(1 / 2\) and \(2 .\) Describe how the solution changes as \(\omega\) increases.
What do you think about this solution?
We value your feedback to improve our textbook solutions.