Chapter 3: Problem 27
By combining the results of Problems 24 through \(26,\) show that the solution of the initial value problem $$ L[y]=\left(a D^{2}+b D+c\right) y=g(t), \quad y\left(t_{0}\right)=0, \quad y^{\prime}\left(t_{0}\right)=0 $$ where \(a, b,\) and \(c\) are constants, has the form $$ y=\phi(t)=\int_{t_{0}}^{t} K(t-s) g(s) d s $$ The function \(K\) depends only on the solutions \(y_{1}\) and \(y_{2}\) of the corresponding homogeneous equation and is independent of the nonhomogeneous term. Once \(K\) is determined, all nonhomogeneous problems involving the same differential operator \(L\) are reduced to the evaluation of an integral. Note also that although \(K\) depends on both \(t\) and \(s,\) only the combination \(t-s\) appears, so \(K\) is actually a function of a single variable. Thinking of \(g(t)\) as the input to the problem and \(\phi(t)\) as the output, it follows from Eq. (i) that the output depends on the input over the entire interval from the initial point \(t_{0}\) to the current value \(t .\) The integral in Eq. (i) is called the convolution of \(K\) and \(g,\) and \(K\) is referred to as the kernel.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.