Chapter 3: Problem 22
find the fundamental set of solutions specified by Theorem 3.2.5 for the given differential equation and initial point. $$ y^{\prime \prime}+4 y^{\prime}+3 y=0, \quad t_{0}=1 $$
Chapter 3: Problem 22
find the fundamental set of solutions specified by Theorem 3.2.5 for the given differential equation and initial point. $$ y^{\prime \prime}+4 y^{\prime}+3 y=0, \quad t_{0}=1 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the solution of the given initial value problem. $$ y^{\prime \prime}+4 y=3 \sin 2 t, \quad y(0)=2, \quad y^{\prime}(0)=-1 $$
A spring-mass system with a hardening spring (Problem 32 of Section 3.8 ) is acted on by a periodic external force. In the absence of damping, suppose that the displacement of the mass satisfies the initial value problem $$ u^{\prime \prime}+u+\frac{1}{5} u^{3}=\cos \omega t, \quad u(0)=0, \quad u^{\prime}(0)=0 $$ (a) Let \(\omega=1\) and plot a computer-generated solution of the given problem. Does the system exhibit a beat? (b) Plot the solution for several values of \(\omega\) between \(1 / 2\) and \(2 .\) Describe how the solution changes as \(\omega\) increases.
Use the method outlined in Problem 28 to solve the given differential equation. $$ t y^{\prime \prime}-(1+t) y^{\prime}+y=t^{2} e^{2 t}, \quad t>0 ; \quad y_{1}(t)=1+t \quad(\text { see Problem } 15) $$
A series circuit has a capacitor of \(0.25 \times 10^{-6}\) farad, a resistor of \(5 \times 10^{3}\) ohms, and an inductor of 1 henry. The initial charge on the capacitor is zero. If a 12 -volt battery is connected to the circuit and the circuit is closed at \(t=0,\) determine the charge on the capacitor at \(t=0.001 \mathrm{sec},\) at \(t=0.01 \mathrm{sec},\) and at any time \(t .\) Also determine the limiting charge as \(t \rightarrow \infty\)
A mass of \(20 \mathrm{g}\) stretches a spring \(5 \mathrm{cm}\). Suppose that the mass is also attached to a viscous damper with a damping constant of \(400 \mathrm{dyne}\) -sec/cm. If the mass is pulled down an additional \(2 \mathrm{cm}\) and then released, find its position \(u\) at any time \(t .\) Plot \(u\) versus \(t .\) Determine the quasi frequency and the quasi period. Determine the ratio of the quasi period to the period of the corresponding undamped motion. Also find the time \(\tau\) such that \(|u(t)|<0.05\) \(\mathrm{cm}\) for all \(t>\tau\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.