Chapter 3: Problem 21
find the solution of the given initial value problem. Sketch the graph of the solution and describe its behavior for increasing\(t.\) $$ y^{\prime \prime}+y^{\prime}+1.25 y=0, \quad y(0)=3, \quad y^{\prime}(0)=1 $$
Chapter 3: Problem 21
find the solution of the given initial value problem. Sketch the graph of the solution and describe its behavior for increasing\(t.\) $$ y^{\prime \prime}+y^{\prime}+1.25 y=0, \quad y(0)=3, \quad y^{\prime}(0)=1 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIf a series circuit has a capacitor of \(C=0.8 \times 10^{-6}\) farad and an inductor of \(L=0.2\) henry, find the resistance \(R\) so that the circuit is critically damped.
Write the given expression as a product of two trigonometric functions of different frequencies. \(\cos \pi t+\cos 2 \pi t\)
A series circuit has a capacitor of \(10^{-5}\) farad, a resistor of \(3 \times 10^{2}\) ohms, and an inductor of 0.2 henry. The initial charge on the capacitor is \(10^{-6}\) coulomb and there is no initial current. Find the charge \(Q\) on the capacitor at any time \(t .\)
determine \(\omega_{0}, R,\) and \(\delta\) so as to write the given expression in the form \(u=R \cos \left(\omega_{0} t-\delta\right)\) $$ u=4 \cos 3 t-2 \sin 3 t $$
(a) Determine a suitable form for \(Y(t)\) if the method of undetermined coefficients is to be used. (b) Use a computer algebra system to find a particular solution of the given equation. $$ y^{\prime \prime}+y=t(1+\sin t) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.