Chapter 3: Problem 18
Verify that the given functions \(y_{1}\) and \(y_{2}\) satisfy the corresponding homogeneous equation; then find a particular solution of the given nonhomogeneous equation. In Problems 19 and \(20 g\) is an arbitrary continuous function. $$ \begin{array}{l}{x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-0.25\right) y=3 x^{3 / 2} \sin x, \quad x>0 ; \quad y_{1}(x)=x^{-1 / 2} \sin x, \quad y_{2}(x)=} \\ {x^{-1 / 2} \cos x}\end{array} $$
Short Answer
Step by step solution
Determine the homogeneous equation
Verify if \(y_1(x)\) satisfies the homogeneous equation
Verify if \(y_2(x)\) satisfies the homogeneous equation
Find a particular solution for the nonhomogeneous equation
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.