Chapter 3: Problem 17
Find a differential equation whose general solution is \(y=c_{1} e^{2 t}+c_{2} e^{-3 t}\)
Chapter 3: Problem 17
Find a differential equation whose general solution is \(y=c_{1} e^{2 t}+c_{2} e^{-3 t}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the general solution of the given differential equation. $$ y^{\prime \prime}-y^{\prime}-2 y=\cosh 2 t \quad \text { Hint } \cosh t=\left(e^{\prime}+e^{-t}\right) / 2 $$
A spring is stretched 6 in. by a mass that weighs 8 lb. The mass is attached to a dashpot mechanism that has a damping constant of \(0.25 \mathrm{lb}-\) sec/ft and is acted on by an external force of \(4 \cos 2 t\) lb. (a) Determine the steady-state response of this system. (b) If the given mass is replaced by a mass \(m,\) determine the value of \(m\) for which the amplitude of the steady-state response is maximum.
Use the method outlined in Problem 28 to solve the given differential equation. $$ t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=4 t^{2}, \quad t>0 ; \quad y_{1}(t)=t $$
Write the given expression as a product of two trigonometric functions of different frequencies. \(\cos \pi t+\cos 2 \pi t\)
The position of a certain spring-mass system satisfies the initial value problem $$ u^{\prime \prime}+\frac{1}{4} u^{\prime}+2 u=0, \quad u(0)=0, \quad u^{\prime}(0)=2 $$ (a) Find the solution of this initial value problem. (b) Plot \(u\) versus \(t\) and \(u^{\prime}\) versus \(t\) on the same axes. (c) Plot \(u\) versus \(u\) in the phase plane (see Problem 28 ). Identify several corresponding points on the curves in parts (b) and (c). What is the direction of motion on the phase plot as \(t\) increases?
What do you think about this solution?
We value your feedback to improve our textbook solutions.