Chapter 3: Problem 16
Show that \(A \cos \omega_{0} t+B \sin \omega_{0} t\) can be written in the form \(r \sin \left(\omega_{0} t-\theta\right) .\) Determine \(r\) and \(\theta\) in terms of \(A\) and \(B\). If \(R \cos \left(\omega_{0} t-\delta\right)=r \sin \left(\omega_{0} t-\theta\right),\) determine the relationship among \(R, r, \delta,\) and \(\theta .\)