Chapter 3: Problem 1
use Euler’s formula to write the given expression in the form a + ib. $$ \exp (1+2 i) $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 3: Problem 1
use Euler’s formula to write the given expression in the form a + ib. $$ \exp (1+2 i) $$
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the method of variation of parameters to find a particular solution of the given differential equation. Then check your answer by using the method of undetermined coefficients. $$ 4 y^{\prime \prime}-4 y^{\prime}+y=16 e^{t / 2} $$
Find the solution of the given initial value problem. $$ y^{\prime \prime}-2 y^{\prime}+y=t e^{\prime}+4, \quad y(0)=1, \quad y^{\prime}(0)=1 $$
(a) Show that the phase of the forced response of Eq. ( 1) satisfies tan \(\delta=\gamma \omega / m\left(\omega_{0}^{2}-\omega^{2}\right)\) (b) Plot the phase \(\delta\) as a function of the forcing frequency \(\omega\) for the forced response of \(u^{\prime \prime}+0.125 u^{\prime}+u=3 \cos \omega t\)
In many physical problems the nonhomogencous term may be specified by different formulas in different time periods. As an example, determine the solution \(y=\phi(t)\) of $$ y^{\prime \prime}+y=\left\\{\begin{array}{ll}{t,} & {0 \leq t \leq \pi} \\\ {\pi e^{x-t},} & {t>\pi}\end{array}\right. $$ $$ \begin{array}{l}{\text { satisfying the initial conditions } y(0)=0 \text { and } y^{\prime}(0)=1 . \text { Assume that } y \text { and } y^{\prime} \text { are also }} \\ {\text { continuous at } t=\pi \text { . Plot the nonhomogencous term and the solution as functions of time. }} \\ {\text { Hint: First solve the initial value problem for } t \leq \pi \text { ; then solve for } t>\pi \text { , determining the }} \\ {\text { constants in the latter solution from the continuity conditions at } t=\pi \text { . }}\end{array} $$
In each of Problems 13 through 18 find the solution of the given initial value problem. $$ y^{\prime \prime}+y^{\prime}-2 y=2 t, \quad y(0)=0, \quad y^{\prime}(0)=1 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.