Chapter 3: Problem 1
use Euler’s formula to write the given expression in the form a + ib. $$ \exp (1+2 i) $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 3: Problem 1
use Euler’s formula to write the given expression in the form a + ib. $$ \exp (1+2 i) $$
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeBy combining the results of Problems 24 through \(26,\) show that the solution of the initial value problem $$ L[y]=\left(a D^{2}+b D+c\right) y=g(t), \quad y\left(t_{0}\right)=0, \quad y^{\prime}\left(t_{0}\right)=0 $$ where \(a, b,\) and \(c\) are constants, has the form $$ y=\phi(t)=\int_{t_{0}}^{t} K(t-s) g(s) d s $$ The function \(K\) depends only on the solutions \(y_{1}\) and \(y_{2}\) of the corresponding homogeneous equation and is independent of the nonhomogeneous term. Once \(K\) is determined, all nonhomogeneous problems involving the same differential operator \(L\) are reduced to the evaluation of an integral. Note also that although \(K\) depends on both \(t\) and \(s,\) only the combination \(t-s\) appears, so \(K\) is actually a function of a single variable. Thinking of \(g(t)\) as the input to the problem and \(\phi(t)\) as the output, it follows from Eq. (i) that the output depends on the input over the entire interval from the initial point \(t_{0}\) to the current value \(t .\) The integral in Eq. (i) is called the convolution of \(K\) and \(g,\) and \(K\) is referred to as the kernel.
A spring-mass system has a spring constant of \(3 \mathrm{N} / \mathrm{m}\). A mass of \(2 \mathrm{kg}\) is attached to the spring and the motion takes place in a viscous fluid that offers a resistance numerically equal to the magnitude of the instantaneous velocity. If the system is driven by an external force of \(3 \cos 3 t-2 \sin 3 t \mathrm{N},\) determine the steady-state response. Express your answer in the form \(R \cos (\omega t-\delta)\)
(a) Determine a suitable form for \(Y(t)\) if the method of undetermined coefficients is to be used. (b) Use a computer algebra system to find a particular solution of the given equation. $$ y^{\prime \prime}+4 y=t^{2} \sin 2 t+(6 t+7) \cos 2 t $$
Verify that the given functions \(y_{1}\) and \(y_{2}\) satisfy the corresponding homogeneous equation; then find a particular solution of the given nonhomogeneous equation. In Problems 19 and \(20 g\) is an arbitrary continuous function. $$ \begin{array}{l}{x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-0.25\right) y=3 x^{3 / 2} \sin x, \quad x>0 ; \quad y_{1}(x)=x^{-1 / 2} \sin x, \quad y_{2}(x)=} \\ {x^{-1 / 2} \cos x}\end{array} $$
Find the solution of the given initial value problem. $$ y^{\prime \prime}+4 y=3 \sin 2 t, \quad y(0)=2, \quad y^{\prime}(0)=-1 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.