Chapter 3: Problem 1
find the Wronskian of the given pair of functions. $$ e^{2 t}, \quad e^{-3 t / 2} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 3: Problem 1
find the Wronskian of the given pair of functions. $$ e^{2 t}, \quad e^{-3 t / 2} $$
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeVerify that the given functions \(y_{1}\) and \(y_{2}\) satisfy the corresponding
homogeneous equation; then find a particular solution of the given
nonhomogeneous equation. In Problems 19 and \(20 g\) is an arbitrary continuous
function.
$$
(1-x) y^{\prime \prime}+x y^{\prime}-y=g(x), \quad 0
If a series circuit has a capacitor of \(C=0.8 \times 10^{-6}\) farad and an inductor of \(L=0.2\) henry, find the resistance \(R\) so that the circuit is critically damped.
Consider the initial value problem $$ m u^{\prime \prime}+\gamma u^{\prime}+k u=0, \quad u(0)=u_{0}, \quad u^{\prime}(0)=v_{0} $$ Assume that \(\gamma^{2}<4 k m .\) (a) Solve the initial value problem, (b) Write the solution in the form \(u(t)=R \exp (-\gamma t / 2 m) \cos (\mu t-\delta) .\) Determine \(R\) in terms of \(m, \gamma, k, u_{0},\) and \(v_{0}\). (c) Investigate the dependence of \(R\) on the damping coefficient \(\gamma\) for fixed values of the other parameters.
Verify that the given functions \(y_{1}\) and \(y_{2}\) satisfy the corresponding homogeneous equation; then find a particular solution of the given nonhomogeneous equation. In Problems 19 and \(20 g\) is an arbitrary continuous function. $$ \begin{array}{l}{x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-0.25\right) y=g(x), \quad x>0 ; \quad y_{1}(x)=x^{-1 / 2} \sin x, \quad y_{2}(x)=} \\\ {x^{-1 / 2} \cos x}\end{array} $$
Use the method of reduction of order to find a second solution of the given differential equation. \(x^{2} y^{\prime \prime}-(x-0.1875) y=0, \quad x>0 ; \quad y_{1}(x)=x^{1 / 4} e^{2 \sqrt{x}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.