Chapter 3: Problem 1
find the Wronskian of the given pair of functions. $$ e^{2 t}, \quad e^{-3 t / 2} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 3: Problem 1
find the Wronskian of the given pair of functions. $$ e^{2 t}, \quad e^{-3 t / 2} $$
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeA spring-mass system has a spring constant of \(3 \mathrm{N} / \mathrm{m}\). A mass of \(2 \mathrm{kg}\) is attached to the spring and the motion takes place in a viscous fluid that offers a resistance numerically equal to the magnitude of the instantaneous velocity. If the system is driven by an external force of \(3 \cos 3 t-2 \sin 3 t \mathrm{N},\) determine the steady-state response. Express your answer in the form \(R \cos (\omega t-\delta)\)
A series circuit has a capacitor of \(0.25 \times 10^{-6}\) farad and an inductor of 1 henry. If the initial charge on the capacitor is \(10^{-6}\) coulomb and there is no initial current, find the charge \(Q\) on the capacitor at any time \(t\)
The method of Problem 20 can be extended to second order equations with variable coefficients. If \(y_{1}\) is a known nonvanishing solution of \(y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0,\) show that a second solution \(y_{2}\) satisfies \(\left(y_{2} / y_{1}\right)^{\prime}=W\left(y_{1}, y_{2}\right) / y_{1}^{2},\) where \(W\left(y_{1}, y_{2}\right)\) is the Wronskian \(\left. \text { of }\left.y_{1} \text { and } y_{2} \text { . Then use Abel's formula [Eq. ( } 8\right) \text { of Section } 3.3\right]\) to determine \(y_{2}\).
If \(a, b,\) and \(c\) are positive constants, show that all solutions of \(a y^{\prime \prime}+b y^{\prime}+c y=0\) approach zero as \(t \rightarrow \infty\).
Use the method of reduction of order to find a second solution of the given differential equation. \(x^{2} y^{\prime \prime}-(x-0.1875) y=0, \quad x>0 ; \quad y_{1}(x)=x^{1 / 4} e^{2 \sqrt{x}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.