Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 13

Find the solution of the given initial value problem. Sketch the graph of the solution and describe its behavior as \(t\) increases. $$ y^{\prime \prime}+5 y^{\prime}+3 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0 $$

Problem 13

find the general solution of the given differential equation. $$ y^{\prime \prime}+2 y^{\prime}+1.25 y=0 $$

Problem 13

If the functions \(y_{1}\) and \(y_{2}\) are linearly independent solutions of \(y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0,\) determine under what conditions the functions \(y_{3}=a_{1} y_{1}+a_{2} y_{2}\) and \(y_{4}=b_{1} y_{1}+b_{2} y_{2}\) also form a linearly independent set of solutions.

Problem 13

Solve the given initial value problem. Sketch the graph of the solution and describe its behavior for increasing \(t.\) \(9 y^{\prime \prime}+6 y^{\prime}+82 y=0, \quad y(0)=-1, \quad y^{\prime}(0)=2\)

Problem 13

Verify that the given functions \(y_{1}\) and \(y_{2}\) satisfy the corresponding homogeneous equation; then find a particular solution of the given nonhomogeneous equation. In Problems 19 and \(20 g\) is an arbitrary continuous function. $$ t^{2} y^{\prime \prime}-2 y=3 t^{2}-1, \quad t>0 ; \quad y_{1}(t)=t^{2}, \quad y_{2}(t)=t^{-1} $$

Problem 14

Find the solution of the given initial value problem. $$ y^{\prime \prime}+4 y=t^{2}+3 e^{\prime}, \quad y(0)=0, \quad y^{\prime}(0)=2 $$

Problem 14

(a) Show that the phase of the forced response of Eq. ( 1) satisfies tan \(\delta=\gamma \omega / m\left(\omega_{0}^{2}-\omega^{2}\right)\) (b) Plot the phase \(\delta\) as a function of the forcing frequency \(\omega\) for the forced response of \(u^{\prime \prime}+0.125 u^{\prime}+u=3 \cos \omega t\)

Problem 14

find the general solution of the given differential equation. $$ 9 y^{\prime \prime}+9 y^{\prime}-4 y=0 $$

Problem 14

Show that the period of motion of an undamped vibration of a mass hanging from a vertical spring is \(2 \pi \sqrt{L / g},\) where \(L\) is the elongation of the spring due to the mass and \(g\) is the acceleration due to gravity.

Problem 14

Solve the given initial value problem. Sketch the graph of the solution and describe its behavior for increasing \(t.\) \(y^{\prime \prime}+4 y^{\prime}+4 y=0, \quad y(-1)=2, \quad y^{\prime}(-1)=1\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks