Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 27

Use the method of reduction of order to find a second solution of the given differential equation. \(x y^{\prime \prime}-y^{\prime}+4 x^{3} y=0, \quad x>0 ; \quad y_{1}(x)=\sin x^{2}\)

Problem 27

By combining the results of Problems 24 through \(26,\) show that the solution of the initial value problem $$ L[y]=\left(a D^{2}+b D+c\right) y=g(t), \quad y\left(t_{0}\right)=0, \quad y^{\prime}\left(t_{0}\right)=0 $$ where \(a, b,\) and \(c\) are constants, has the form $$ y=\phi(t)=\int_{t_{0}}^{t} K(t-s) g(s) d s $$ The function \(K\) depends only on the solutions \(y_{1}\) and \(y_{2}\) of the corresponding homogeneous equation and is independent of the nonhomogeneous term. Once \(K\) is determined, all nonhomogeneous problems involving the same differential operator \(L\) are reduced to the evaluation of an integral. Note also that although \(K\) depends on both \(t\) and \(s,\) only the combination \(t-s\) appears, so \(K\) is actually a function of a single variable. Thinking of \(g(t)\) as the input to the problem and \(\phi(t)\) as the output, it follows from Eq. (i) that the output depends on the input over the entire interval from the initial point \(t_{0}\) to the current value \(t .\) The integral in Eq. (i) is called the convolution of \(K\) and \(g,\) and \(K\) is referred to as the kernel.

Problem 28

In this problem we outline a different derivation of Euler's formula. (a) Show that \(y_{1}(t)=\cos t\) and \(y_{2}(t)=\sin t\) are a fundamental set of solutions of \(y^{\prime \prime}+\) \(y=0 ;\) that is, show that they are solutions and that their Wronskian is not zero. (b) Show (formally) that \(y=e^{i t}\) is also a solution of \(y^{\prime \prime}+y=0 .\) Therefore, $$ e^{i t}=c_{1} \cos t+c_{2} \sin t $$ for some constants \(c_{1}\) and \(c_{2}\). Why is this so? (c) Set \(t=0\) in Eq. (i) to show that \(c_{1}=1\) (d) Assuming that Eq. ( 14) is true, differentiate \(E q\). (i) and then set \(t=0\) to conclude that \(c_{2}=i .\) Use the values of \(c_{1}\) and \(c_{2}\) in Eq. ( i ) to arrive at Euler's formula.

Problem 28

Use the method of reduction of order to find a second solution of the given differential equation. \((x-1) y^{\prime \prime}-x y^{\prime}+y=0, \quad x>1 ; \quad y_{1}(x)=e^{x}\)

Problem 28

In many physical problems the nonhomogencous term may be specified by different formulas in different time periods. As an example, determine the solution \(y=\phi(t)\) of $$ y^{\prime \prime}+y=\left\\{\begin{array}{ll}{t,} & {0 \leq t \leq \pi} \\\ {\pi e^{x-t},} & {t>\pi}\end{array}\right. $$ $$ \begin{array}{l}{\text { satisfying the initial conditions } y(0)=0 \text { and } y^{\prime}(0)=1 . \text { Assume that } y \text { and } y^{\prime} \text { are also }} \\ {\text { continuous at } t=\pi \text { . Plot the nonhomogencous term and the solution as functions of time. }} \\ {\text { Hint: First solve the initial value problem for } t \leq \pi \text { ; then solve for } t>\pi \text { , determining the }} \\ {\text { constants in the latter solution from the continuity conditions at } t=\pi \text { . }}\end{array} $$

Problem 28

The position of a certain undamped spring-mass system satisfies the initial value problem $$ u^{\prime \prime}+2 u=0, \quad u(0)=0, \quad u^{\prime}(0)=2 $$ (a) Find the solution of this initial value problem. (b) Plot \(u\) versus \(t\) and \(u^{\prime}\) versus \(t\) on the same axes. (c) Plot \(u^{\prime}\) versus \(u ;\) that is, plot \(u(t)\) and \(u^{\prime}(t)\) parametrically with \(t\) as the parameter. This plot is known as a phase plot and the \(u u^{\prime}\) -plane is called the phase plane. Observe that a closed curve in the phase plane corresponds to a periodic solution \(u(t) .\) What is the direction of motion on the phase plot as \(t\) increases?

Problem 28

Equations with the Dependent Variable Missing. For a scond order differential equation of the form \(y^{\prime \prime}=f\left(t, y^{\prime}\right),\) the substitution \(v=y^{\prime}, v^{\prime}=y^{\prime \prime}\) leads to a first order equation of the form \(v^{\prime}=f(t, v)\). If this equation can be solved for \(v\), then \(y\) can be obtained by integrating \(d y / d t=v .\) Note that one arbitrary constant is obtained in solving the first order equation for \(v,\) and a second is introduced in the integration for \(y\). In each of Problems 28 through 33 use this substitution to solve the given equation. $$ t^{2} y^{\prime \prime}+2 t y^{\prime}-1=0, \quad t>0 $$

Problem 28

Show that the functions \(f(t)=t^{2}|t|\) and \(g(t)=t^{3}\) are linearly dependent on \(0< t< 1\) and on \(-1< t<0,\) but are linearly independent on \(-1< t< 1 .\) Although \(f\) and \(g\) are linearly independent there, show that \(W(f, g)\) is zero for all \(t\) in \(-1< t< 1 .\) Hence \(f\) and \(g\) cannot be solutions of an equation \(y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0\) with \(p\) and \(q\) continuous on \(-1< t< 1 .\)

Problem 29

Equations with the Dependent Variable Missing. For a scond order differential equation of the form \(y^{\prime \prime}=f\left(t, y^{\prime}\right),\) the substitution \(v=y^{\prime}, v^{\prime}=y^{\prime \prime}\) leads to a first order equation of the form \(v^{\prime}=f(t, v)\). If this equation can be solved for \(v\), then \(y\) can be obtained by integrating \(d y / d t=v .\) Note that one arbitrary constant is obtained in solving the first order equation for \(v,\) and a second is introduced in the integration for \(y\). In each of Problems 28 through 33 use this substitution to solve the given equation. $$ t y_{0}^{\prime \prime}+y^{\prime}=1, \quad t>0 $$

Problem 29

The position of a certain spring-mass system satisfies the initial value problem $$ u^{\prime \prime}+\frac{1}{4} u^{\prime}+2 u=0, \quad u(0)=0, \quad u^{\prime}(0)=2 $$ (a) Find the solution of this initial value problem. (b) Plot \(u\) versus \(t\) and \(u^{\prime}\) versus \(t\) on the same axes. (c) Plot \(u\) versus \(u\) in the phase plane (see Problem 28 ). Identify several corresponding points on the curves in parts (b) and (c). What is the direction of motion on the phase plot as \(t\) increases?

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks