Chapter 2: Problem 6
Draw a direction field for the given differential equation and state whether you think that the solutions are converging or diverging. $$ y^{\prime}=y(3-t y) $$
Chapter 2: Problem 6
Draw a direction field for the given differential equation and state whether you think that the solutions are converging or diverging. $$ y^{\prime}=y(3-t y) $$
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Solve the Gompertz equation $$ d y / d t=r y \ln (K / y) $$ subject to the initial condition \(y(0)=y_{0}\) (b) For the data given in Example 1 in the text \([ \leftr=0.71 \text { per year, } K=80.5 \times 10^{6} \mathrm{kg}\), \right. \(\left.y_{0} / K=0.25\right]\), use the Gompertz model to find the predicted value of \(y(2) .\) (c) For the same data as in part (b), use the Gompertz model to find the time \(\tau\) at which \(y(\tau)=0.75 K .\) Hint: You may wish to let \(u=\ln (y / K)\).
Find an integrating factor and solve the given equation. $$ \left[4\left(x^{3} / y^{2}\right)+(3 / y)\right] d x+\left[3\left(x / y^{2}\right)+4 y\right] d y=0 $$
Show that if \(\left(N_{x}-M_{y}\right) / M=Q,\) where \(Q\) is a function of \(y\) only, then the differential equation $$ M+N y^{\prime}=0 $$ has an integrating factor of the form $$ \mu(y)=\exp \int Q(y) d y $$
A ball with mass \(0.15 \mathrm{kg}\) is thrown upward with initial velocity \(20 \mathrm{m} / \mathrm{sec}\) from the roof of a building \(30 \mathrm{m}\) high. Neglect air resistance. $$ \begin{array}{l}{\text { (a) Find the maximum height above the ground that the ball reaches. }} \\ {\text { (b) Assuming that the ball misses the building on the way down, find the time that it hits }} \\ {\text { the ground. }} \\\ {\text { (c) Plot the graphs of velocity and position versus time. }}\end{array} $$
Involve equations of the form \(d y / d t=f(y) .\) In each problem sketch the
graph of \(f(y)\) versus \(y\), determine the critical (equilibrium) points, and
classify each one as asymptotically stable, unstable, or semistable (see
Problem 7 ).
$$
d y / d t=y^{2}\left(y^{2}-1\right), \quad-\infty
What do you think about this solution?
We value your feedback to improve our textbook solutions.