Chapter 2: Problem 3
In each of Problems I through 6 determine (without solving the problem) an interval in which the solution of the given initial value problem is certain to exist. $$ y^{\prime}+(\tan t) y=\sin t, \quad y(\pi)=0 $$
Chapter 2: Problem 3
In each of Problems I through 6 determine (without solving the problem) an interval in which the solution of the given initial value problem is certain to exist. $$ y^{\prime}+(\tan t) y=\sin t, \quad y(\pi)=0 $$
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Solve the Gompertz equation $$ d y / d t=r y \ln (K / y) $$ subject to the initial condition \(y(0)=y_{0}\) (b) For the data given in Example 1 in the text \([ \leftr=0.71 \text { per year, } K=80.5 \times 10^{6} \mathrm{kg}\), \right. \(\left.y_{0} / K=0.25\right]\), use the Gompertz model to find the predicted value of \(y(2) .\) (c) For the same data as in part (b), use the Gompertz model to find the time \(\tau\) at which \(y(\tau)=0.75 K .\) Hint: You may wish to let \(u=\ln (y / K)\).
A mass of \(0.25 \mathrm{kg}\) is dropped from rest in a medium offering a resistance of \(0.2|v|,\) where \(v\) is measured in \(\mathrm{m} / \mathrm{sec}\). $$ \begin{array}{l}{\text { (a) If the mass is dropped from a height of } 30 \mathrm{m} \text { , find its velocity when it hits the ground. }} \\ {\text { (b) If the mass is to attain a velocity of no more than } 10 \mathrm{m} / \mathrm{sec} \text { , find the maximum height }} \\ {\text { from which it can be dropped. }} \\ {\text { (c) Suppose that the resistive force is } k|v| \text { , where } v \text { is measured in } \mathrm{m} / \mathrm{sec} \text { and } k \text { is a }} \\ {\text { constant. If the mass is dropped from a height of } 30 \mathrm{m} \text { and must hit the ground with a }} \\ {\text { velocity of no more than } 10 \mathrm{m} / \mathrm{sec} \text { , determine the coefficient of resistance } k \text { that is required. }}\end{array} $$
Draw a direction field for the given differential equation and state whether you think that the solutions are converging or diverging. $$ y^{\prime}=y(3-t y) $$
Involve equations of the form \(d y / d t=f(y) .\) In each problem sketch the graph of \(f(y)\) versus \(y\), determine the critical (equilibrium) points, and classify each one as asymptotically stable, unstable, or semistable (see Problem 7 ). $$ d y / d t=a y-b \sqrt{y}, \quad a>0, \quad b>0, \quad y_{0} \geq 0 $$
Solve the initial value problem $$ y^{\prime}+p(t) y=0, \quad y(0)=1 $$ where $$ p(t)=\left\\{\begin{array}{lr}{2,} & {0 \leq t \leq 1} \\ {1,} & {t>1}\end{array}\right. $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.