Chapter 2: Problem 26
Chemical Reactions. A second order chemical reaction involves the interaction (collision) of one molecule of a substance \(P\) with one molecule of a substance \(Q\) to produce one molecule of a new substance \(X ;\) this is denoted by \(P+Q \rightarrow X\). Suppose that \(p\) and \(q\), where \(p \neq q,\) are the initial concentrations of \(P\) and \(Q,\) respectively, and let \(x(t)\) be the concentration of \(X\) at time \(t\). Then \(p-x(t)\) and \(q-x(t)\) are the concentrations of \(P\) and \(Q\) at time \(t,\) and the rate at which the reaction occurs is given by the equation $$ d x / d t=\alpha(p-x)(q-x) $$ where \(\alpha\) is a positive constant. (a) If \(x(0)=0\), determine the limiting value of \(x(t)\) as \(t \rightarrow \infty\) without solving the differential equation. Then solve the initial value problem and find \(x(t)\) for any \(l .\) (b) If the substances \(P\) and \(Q\) are the same, then \(p=q\) and \(\mathrm{Eq}\). (i) is replaced by $$ d x / d t=\alpha(p-x)^{2} $$ If \(x(0)=0,\) determine the limiting value of \(x(t)\) as \(t \rightarrow \infty\) without solving the differential equation. Then solve the initial value problem and determine \(x(t)\) for any \(t .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Second Order Reaction
- \(\frac{dx}{dt} = \alpha(p-x)(q-x)\)
Differential Equations in Chemistry
- \(\frac{dx}{dt} = \alpha(p-x)(q-x)\)
Rate of Reaction
- \(\frac{dx}{dt} = \alpha(p-x)(q-x)\)