Chapter 2: Problem 20
Convergence of Euler's Method. It can be shown that, under suitable conditions on \(f\) the numerical approximation generated by the Euler method for the initial value problem \(y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}\) converges to the exact solution as the step size \(h\) decreases. This is illustrated by the following example. Consider the initial value problem $$ y^{\prime}=1-t+y, \quad y\left(t_{0}\right)=y_{0} $$ (a) Show that the exact solution is \(y=\phi(t)=\left(y_{0}-t_{0}\right) e^{t-t_{0}}+t\) (b) Using the Euler formula, show that $$ y_{k}=(1+h) y_{k-1}+h-h t_{k-1}, \quad k=1,2, \ldots $$ (c) Noting that \(y_{1}=(1+h)\left(y_{0}-t_{0}\right)+t_{1},\) show by induction that $$ y_{n}=(1+h)^{x}\left(y_{0}-t_{0}\right)+t_{n} $$ for each positive integer \(n .\) (d) Consider a fixed point \(t>t_{0}\) and for a given \(n\) choose \(h=\left(t-t_{0}\right) / n .\) Then \(t_{n}=t\) for every \(n .\) Note also that \(h \rightarrow 0\) as \(n \rightarrow \infty .\) By substituting for \(h\) in \(\mathrm{Eq}\). (i) and letting \(n \rightarrow \infty,\) show that \(y_{n} \rightarrow \phi(t)\) as \(n \rightarrow \infty\). Hint: \(\lim _{n \rightarrow \infty}(1+a / n)^{n}=e^{a}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.