Chapter 2: Problem 2
Solve the given differential equation. $$ y^{\prime}=x^{2} / y\left(1+x^{3}\right) $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 2: Problem 2
Solve the given differential equation. $$ y^{\prime}=x^{2} / y\left(1+x^{3}\right) $$
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeInvolve equations of the form \(d y / d t=f(y) .\) In each problem sketch the
graph of \(f(y)\) versus \(y\), determine the critical (equilibrium) points, and
classify each one as asymptotically stable, unstable, or semistable (see
Problem 7 ).
$$
d y / d t=y^{2}(1-y)^{2}, \quad-\infty
Find an integrating factor and solve the given equation. $$ d x+(x / y-\sin y) d y=0 $$
Consider the initial value problem $$ y^{\prime}=3 t^{2} /\left(3 y^{2}-4\right), \quad y(1)=0 $$ (a) Use the Euler formula ( 6) with \(h=0.1\) to obtain approximate values of the solution at \(t=1.2,1.4,1.6,\) and 1.8 . (b) Repeat part (a) with \(h=0.05\). (c) Compare the results of parts (a) and (b). Note that they are reasonably close for \(t=1.2,\) \(1.4,\) and 1.6 but are quite different for \(t=1.8\). Also note (from the differential equation) that the line tangent to the solution is parallel to the \(y\) -axis when \(y=\pm 2 / \sqrt{3} \cong \pm 1.155 .\) Explain how this might cause such a difference in the calculated values.
Consider the sequence \(\phi_{n}(x)=2 n x e^{-n x^{2}}, 0 \leq x \leq 1\) (a) Show that \(\lim _{n \rightarrow \infty} \phi_{n}(x)=0\) for \(0 \leq x \leq 1\); hence $$ \int_{0}^{1} \lim _{n \rightarrow \infty} \phi_{n}(x) d x=0 $$ (b) Show that \(\int_{0}^{1} 2 n x e^{-x x^{2}} d x=1-e^{-x}\); hence $$ \lim _{n \rightarrow \infty} \int_{0}^{1} \phi_{n}(x) d x=1 $$ Thus, in this example, $$ \lim _{n \rightarrow \infty} \int_{a}^{b} \phi_{n}(x) d x \neq \int_{a}^{b} \lim _{n \rightarrow \infty} \phi_{n}(x) d x $$ even though \(\lim _{n \rightarrow \infty} \phi_{n}(x)\) exists and is continuous.
(a) Show that \(\phi(t)=e^{2 t}\) is a solution of \(y^{\prime}-2 y^{\prime}-2 y=0\) and that \(y=c \phi(t)\) is also a solution of this equatio for any value of the conntanct \(y^{2}=0\) for \(t>0\), but that \(y=c \phi(t)\) is (b) Show that \(\phi(t)=1 / t\) is a solution of \(y^{\prime}+y^{2}=0\) for \(t>0\), but that \(y=c \phi(t)\) is not solution of this equation anless \(c=0\) or \(c=1 .\) Note that the equation of part (b) is nonlinear, while that of part (a) is linear.
What do you think about this solution?
We value your feedback to improve our textbook solutions.