Chapter 2: Problem 18
we indicate how to prove that the sequence \(\left\\{\phi_{n}(t)\right\\},\) defined by Eqs. (4) through (7), converges. Note that $$ \phi_{n}(t)=\phi_{1}(t)+\left[\phi_{2}(t)-\phi_{1}(t)\right]+\cdots+\left[\phi_{x}(t)-\phi_{n-1}(t)\right] $$ (a) Show that $$ \left|\phi_{n}(t)\right| \leq\left|\phi_{1}(t)\right|+\left|\phi_{2}(t)-\phi_{1}(t)\right|+\cdots+\left|\phi_{n}(t)-\phi_{n-1}(t)\right| $$ (b) Use the results of Problem 17 to show that $$ \left|\phi_{n}(t)\right| \leq \frac{M}{K}\left[K h+\frac{(K h)^{2}}{2 !}+\cdots+\frac{(K h)^{n}}{n !}\right] $$ (c) Show that the sum in part (b) converges as \(n \rightarrow \infty\) and, hence, the sum in part (a) also converges as \(n \rightarrow \infty\). Conclude therefore that the sequence \(\left\\{\phi_{n}(t)\right\\}\) converges since it is the sequence of partial sums of a convergent infinite series.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.