Chapter 2: Problem 17
find the solution of the given initial value problem. $$ y^{\prime}-2 y=e^{2 x}, \quad y(0)=2 $$
Chapter 2: Problem 17
find the solution of the given initial value problem. $$ y^{\prime}-2 y=e^{2 x}, \quad y(0)=2 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that if \(y=\phi(t)\) is a solution of \(y^{\prime}+p(t) y=0,\) then \(y=c \phi(t)\) is also a solution for any value of the constant \(c .\)
Involve equations of the form \(d y / d t=f(y) .\) In each problem sketch the
graph of \(f(y)\) versus \(y\), determine the critical (equilibrium) points, and
classify each one as asymptotically stable, unstable, or semistable (see
Problem 7 ).
$$
d y / d t=y^{2}(1-y)^{2}, \quad-\infty
draw a direction field and plot (or sketch) several solutions of the given differential equation. Describe how solutions appear to behave as \(t\) increases, and how their behavior depends on the initial value \(y_{0}\) when \(t=0\). $$ y^{\prime}=t-1-y^{2} $$
Sometimes it is possible to solve a nonlinear equation by making a change of the dependent variable that converts it into a linear equation. The most important such equation has the form $$ y^{\prime}+p(t) y=q(t) y^{n} $$ and is called a Bernoulli equation after Jakob Bernoulli. deal with equations of this type. (a) Solve Bemoulli's equation when \(n=0\); when \(n=1\). (b) Show that if \(n \neq 0,1\), then the substitution \(v=y^{1-n}\) reduces Bernoulli's equation to a linear equation. This method of solution was found by Leibniz in 1696 .
Involve equations of the form \(d y / d t=f(y) .\) In each problem sketch the
graph of \(f(y)\) versus \(y\), determine the critical (equilibrium) points, and
classify each one as asymptotically stable, unstable, or semistable (see
Problem 7 ).
$$
d y / d t=y^{2}\left(4-y^{2}\right), \quad-\infty
What do you think about this solution?
We value your feedback to improve our textbook solutions.