Chapter 2: Problem 16
Suppose that a certain population has a growth rate that varies with time and that this population satisfies the differential equation $$ d y / d t=(0.5+\sin t) y / 5 $$ $$ \begin{array}{l}{\text { (a) If } y(0)=1, \text { find (or estimate) the time } \tau \text { at which the population has doubled. Choose }} \\ {\text { other initial conditions and determine whether the doubling time } \tau \text { depends on the initial }} \\ {\text { population. }} \\ {\text { (b) Suppose that the growth rate is replaced by its average value } 1 / 10 . \text { Determine the }} \\ {\text { doubling time } \tau \text { in this case. }}\end{array} $$ $$ \begin{array}{l}{\text { (c) Suppose that the term sin } t \text { in the differential equation is replaced by } \sin 2 \pi t \text { ; that is, }} \\\ {\text { the variation in the growth rate has a substantially higher frequency. What effect does this }} \\ {\text { have on the doubling time } t ?} \\ {\text { (d) Plot the solutions obtained in parts (a), (b), and (c) on a single set of axes. }}\end{array} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.