Chapter 2: Problem 13
find the solution of the given initial value problem. $$ y^{\prime}-y=2 t e^{2 t}, \quad y(0)=1 $$
Chapter 2: Problem 13
find the solution of the given initial value problem. $$ y^{\prime}-y=2 t e^{2 t}, \quad y(0)=1 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that the equations are not exact, but become exact when multiplied by the given integrating factor. Then solve the equations. $$ \left(\frac{\sin y}{y}-2 e^{-x} \sin x\right) d x+\left(\frac{\cos y+2 e^{-x} \cos x}{y}\right) d y=0, \quad \mu(x, y)=y e^{x} $$
Sometimes it is possible to solve a nonlinear equation by making a change of the dependent variable that converts it into a linear equation. The most important such equation has the form $$ y^{\prime}+p(t) y=q(t) y^{n} $$ and is called a Bernoulli equation after Jakob Bernoulli. deal with equations of this type. (a) Solve Bemoulli's equation when \(n=0\); when \(n=1\). (b) Show that if \(n \neq 0,1\), then the substitution \(v=y^{1-n}\) reduces Bernoulli's equation to a linear equation. This method of solution was found by Leibniz in 1696 .
let \(\phi_{0}(t)=0\) and use the method of successive approximations to approximate the solution of the given initial value problem. (a) Calculate \(\phi_{1}(t), \ldots, \phi_{3}(t)\) (b) \(\mathrm{Plot} \phi_{1}(t), \ldots, \phi_{3}(t)\) and observe whether the iterates appear to be converging. $$ y^{\prime}=1-y^{3}, \quad y(0)=0 $$
Determine whether or not each of the equations is exact. If it is exact, find the solution. $$ \left(2 x y^{2}+2 y\right)+\left(2 x^{2} y+2 x\right) y^{\prime}=0 $$
A body of constant mass \(m\) is projected vertically upward with an initial velocity \(v_{0}\) in a medium offering a resistance \(k|v|,\) where \(k\) is a constant. Neglect changes in the gravitational force. $$ \begin{array}{l}{\text { (a) Find the maximum height } x_{m} \text { attained by the body and the time } t_{m} \text { at which this }} \\ {\text { maximum height is reached. }} \\ {\text { (b) Show that if } k v_{0} / m g<1, \text { then } t_{m} \text { and } x_{m} \text { can be expressed as }}\end{array} $$ $$ \begin{array}{l}{t_{m}=\frac{v_{0}}{g}\left[1-\frac{1}{2} \frac{k v_{0}}{m g}+\frac{1}{3}\left(\frac{k v_{0}}{m g}\right)^{2}-\cdots\right]} \\\ {x_{m}=\frac{v_{0}^{2}}{2 g}\left[1-\frac{2}{3} \frac{k r_{0}}{m g}+\frac{1}{2}\left(\frac{k v_{0}}{m g}\right)^{2}-\cdots\right]}\end{array} $$ $$ \text { (c) Show that the quantity } k v_{0} / m g \text { is dimensionless. } $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.