Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 15

Suppose that a certain population obeys the logistic equation \(d y / d t=r y[1-(y / K)]\). (a) If \(y_{0}=K / 3\), find the time \(\tau\) at which the initial population has doubled. Find the value of \(\tau\) corresponding to \(r=0.025\) per year. (b) If \(y_{0} / K=\alpha,\) find the time \(T\) at which \(y(T) / K=\beta,\) where \(0<\alpha, \beta<1 .\) Observe that \(T \rightarrow \infty\) as \(\alpha \rightarrow 0\) or as \(\beta \rightarrow 1 .\) Find the value of \(T\) for \(r=0.025\) per year, \(\alpha=0.1\) and \(\beta=0.9 .\)

Problem 15

Consider the initial value problem $$ y^{\prime}=3 t^{2} /\left(3 y^{2}-4\right), \quad y(1)=0 $$ (a) Use the Euler formula ( 6) with \(h=0.1\) to obtain approximate values of the solution at \(t=1.2,1.4,1.6,\) and 1.8 . (b) Repeat part (a) with \(h=0.05\). (c) Compare the results of parts (a) and (b). Note that they are reasonably close for \(t=1.2,\) \(1.4,\) and 1.6 but are quite different for \(t=1.8\). Also note (from the differential equation) that the line tangent to the solution is parallel to the \(y\) -axis when \(y=\pm 2 / \sqrt{3} \cong \pm 1.155 .\) Explain how this might cause such a difference in the calculated values.

Problem 15

find the solution of the given initial value problem. $$ t y^{\prime}+2 y=t^{2}-t+1, \quad y(1)=\frac{1}{2}, \quad t>0 $$

Problem 15

solve the given initial value problem and determine how the interval in which the solution exists depends on the initial value \(y_{0}\). $$ y^{\prime}+y^{3}=0, \quad y(0)=y_{0} $$

Problem 16

Suppose that a certain population has a growth rate that varies with time and that this population satisfies the differential equation $$ d y / d t=(0.5+\sin t) y / 5 $$ $$ \begin{array}{l}{\text { (a) If } y(0)=1, \text { find (or estimate) the time } \tau \text { at which the population has doubled. Choose }} \\ {\text { other initial conditions and determine whether the doubling time } \tau \text { depends on the initial }} \\ {\text { population. }} \\ {\text { (b) Suppose that the growth rate is replaced by its average value } 1 / 10 . \text { Determine the }} \\ {\text { doubling time } \tau \text { in this case. }}\end{array} $$ $$ \begin{array}{l}{\text { (c) Suppose that the term sin } t \text { in the differential equation is replaced by } \sin 2 \pi t \text { ; that is, }} \\\ {\text { the variation in the growth rate has a substantially higher frequency. What effect does this }} \\ {\text { have on the doubling time } t ?} \\ {\text { (d) Plot the solutions obtained in parts (a), (b), and (c) on a single set of axes. }}\end{array} $$

Problem 16

find the solution of the given initial value problem. $$ y^{\prime}+(2 / t) y=(\cos t) / t^{2} \quad y(\pi)=0 $$

Problem 16

Consider the initial value problem $$ y^{\prime}=t^{2}+y^{2}, \quad y(0)=1 $$ Use Euler's method with \(h=0.1,0.05,0.025,\) and 0.01 to explore the solution of this problem for \(0 \leq t \leq 1 .\) What is your best estimate of the value of the solution at \(t=0.8 ?\) At \(t=1 ?\) Are your results consistent with the direction field in Problem \(9 ?\)

Problem 16

Find the value of \(b\) for which the given equation is exact and then solve it using that value of \(b\). $$ \left(y e^{2 x y}+x\right) d x+b x e^{2 x y} d y=0 $$

Problem 16

solve the given initial value problem and determine how the interval in which the solution exists depends on the initial value \(y_{0}\). $$ y^{\prime}=t^{2} / y\left(1+t^{3}\right), \quad y(0)=y_{0} $$

Problem 16

Another equation that has been used to model population growth is the Gompertz equation: $$ d y / d t=r y \ln (K / y) $$ where \(r\) and \(K\) are positive constants. (a) Sketch the graph of \(f(y)\) versus \(y,\) find the critical points, and determine whether each is asymptotically stable or unstable. (b) For \(0 \leq y \leq K\) determine where the graph of \(y\) versus \(t\) is concave up and where it is concave down. (c) For each \(y\) in \(0

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks